MyNixOS website logo
Description

Contextualizing Tests.

Dissects a package environment or 'covr' coverage object in order to cross reference tested code with the lines that are evaluated, as well as linking those evaluated lines to the documentation that they are described within. Connecting these three pieces of information provides a mechanism of linking tests to documented behaviors.

covtracer

CRAN R-CMD-check CodeCoverage

Tools for contextualizing tests, built using covr test traces. This package provides utilities for linking an assortment of test and package information to paint a more complete picture of how a test was performed.

flowchart LR
    tests[Tests] <--> traces[Traced Exprs] <--> code[Package Code] <--> docs[Package Documentation]

Installation

To install, use remotes to install directly from GitHub

Functionality hinges heavily on coverage objects prepared using covr (≥ 3.5.1.9003). To ensure suggested dependency requirements are met, install with dependencies = TRUE (satisfy all dependencies).

# will install covr >= v3.5.1.9003 for examples
remotes::install_github("Genentech/covtracer", dependencies = TRUE)

Motivation

Tests are not black boxes. When it comes to verifying behaviors of code, we can use observations about the code that is executed by a test to build a more complete picture of exactly what the test does. This is a core part of software validation. By combining information about each test, the tested package code and linking that code to package documentation, we can link documented behaviors to their respective tests.

Getting Started

Test traces are connected to evaluated code using covr (≥ 3.5.1.9003). Likewise, a new option flag (covr.record_tests) must be set in order to record tests alongside the coverage traces. Finally, the package to evaluate must be installed with source references in order to map all the components together.

That’s a lot to configure, but if you’re in a position where this test data is valuable hopefully it’s worth the setup.

library(covtracer)

# additional demo packages
library(dplyr)
library(withr)
library(covr)

withr::with_temp_libpaths({
  pkg <- system.file("examplepkg", package = "covtracer")

  install.packages(
    pkg,
    type = "source",
    repos = NULL,
    quiet = TRUE,
    INSTALL_opts = c("--with-keep.source", "--install-tests")
  )

  options(covr.record_tests = TRUE)
  cov <- covr::package_coverage(pkg)

  ttdf <- test_trace_df(cov)
})

There’s a lot of info in the resulting data.frame, but we’ll focus on just the critical piece, showing which tests evaluate code related to which documented behaviors. Below we show how one might map unit tests to evaluated, documented objects.

Note: Below we ignore documentation for datasets and S4 class constructors. Although these are defined in the package, they don’t map to testable lines of code because they are constructed when the package is built.

traceability_matrix <- ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(test_name, file) %>%
  filter(!duplicated(.)) %>%
  arrange(file)

traceability_matrix
#>                                            test_name                       file
#> 1  Example R6 Person class public methods are traced             Accumulator.Rd
#> 2           S4Example increment generic method works                  Person.Rd
#> 3  Example R6 Person class public methods are traced                  Person.Rd
#> 4           S4Example increment generic method works                   Rando.Rd
#> 5                                               <NA>                   Rando.Rd
#> 6                                               <NA>                   adder.Rd
#> 7           S4Example increment generic method works                   adder.Rd
#> 8           S4Example increment generic method works      complex_call_stack.Rd
#> 9           S4Example increment generic method works  deeper_nested_function.Rd
#> 10          S4Example increment generic method works              hypotenuse.Rd
#> 11          S4Example increment generic method works               increment.Rd
#> 12                      S4Example names method works  names-S4Example-method.Rd
#> 13                                              <NA> names-S4Example2-method.Rd
#> 14          S4Example increment generic method works         nested_function.Rd
#> 15                                              <NA>              rd_sampler.Rd
#> 16          S4Example increment generic method works      recursive_function.Rd
#> 17                                              <NA>        reexport_example.Rd
#> 18                                              <NA>               reexports.Rd
#> 19          S4Example increment generic method works         s3_example_func.Rd
#> 20              S4 Generic Call: show(<myS4Example>)   show-S4Example-method.Rd
#> 21                                              <NA>                       <NA>

We can quickly see which functions or methods are entirely untested.

Use Cases

The data.frame returned by test_trace_df contains a ton of information, and we can measure a few dimensions of the quality of tests with some relatively straightforward analysis.

Traceability Matrix

Perhaps the most immediate use case is to map unit tests to documented behaviors.

ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(test_name, file) %>%
  filter(!duplicated(.)) %>%
  arrange(file)
#>                                            test_name                       file
#> 1  Example R6 Person class public methods are traced             Accumulator.Rd
#> 2           S4Example increment generic method works                  Person.Rd
#> 3  Example R6 Person class public methods are traced                  Person.Rd
#> 4           S4Example increment generic method works                   Rando.Rd
#> 5                                               <NA>                   Rando.Rd
#> 6                                               <NA>                   adder.Rd
#> 7           S4Example increment generic method works                   adder.Rd
#> 8           S4Example increment generic method works      complex_call_stack.Rd
#> 9           S4Example increment generic method works  deeper_nested_function.Rd
#> 10          S4Example increment generic method works              hypotenuse.Rd
#> 11          S4Example increment generic method works               increment.Rd
#> 12                      S4Example names method works  names-S4Example-method.Rd
#> 13                                              <NA> names-S4Example2-method.Rd
#> 14          S4Example increment generic method works         nested_function.Rd
#> 15                                              <NA>              rd_sampler.Rd
#> 16          S4Example increment generic method works      recursive_function.Rd
#> 17                                              <NA>        reexport_example.Rd
#> 18                                              <NA>               reexports.Rd
#> 19          S4Example increment generic method works         s3_example_func.Rd
#> 20              S4 Generic Call: show(<myS4Example>)   show-S4Example-method.Rd
#> 21                                              <NA>                       <NA>

Finding Untested Behaviors

Once we can map unit testing to documentation, we can filter down to only documentation that is not covered by any test.

ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(test_name, count, alias, file) %>%
  filter(is.na(count)) %>%
  arrange(alias)
#>   test_name count                   alias                       file
#> 1      <NA>    NA                   Rando                   Rando.Rd
#> 2      <NA>    NA                   adder                   adder.Rd
#> 3      <NA>    NA                    help               reexports.Rd
#> 4      <NA>    NA names,S4Example2-method names-S4Example2-method.Rd
#> 5      <NA>    NA                  person                       <NA>
#> 6      <NA>    NA              rd_sampler              rd_sampler.Rd
#> 7      <NA>    NA        reexport_example        reexport_example.Rd
#> 8      <NA>    NA               reexports               reexports.Rd

Filter For Only Directly Tested Behaviors

Some tests evaluate a broad set of functionality by calling functions that themselves call out to internal package functions. This is often perfectly fine, since the mechanisms of calling those internal functions are limited by the surfaced user-facing functions. Nevertheless, whether a function is called directly is a good indication of the “unit”-ness of a unit test. You may consider only the coverage of directly tested functions.

ttdf %>%
  filter(!doctype %in% c("data", "class")) %>% # ignore objects without testable code
  select(direct, alias) %>%
  group_by(alias) %>%
  summarize(any_direct_tests = any(direct, na.rm = TRUE)) %>%
  arrange(alias)
#> # A tibble: 21 × 2
#>   alias              any_direct_tests
#>   <chr>              <lgl>           
#> 1 Accumulator        TRUE            
#> 2 Person             TRUE            
#> 3 Rando              TRUE            
#> 4 adder              TRUE            
#> 5 complex_call_stack TRUE            
#> # ℹ 16 more rows
Metadata

Version

0.0.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows