Description
Determine and Evaluate Optimal Cutpoints in Binary Classification Tasks.
Description
Estimate cutpoints that optimize a specified metric in binary classification tasks and validate performance using bootstrapping. Some methods for more robust cutpoint estimation are supported, e.g. a parametric method assuming normal distributions, bootstrapped cutpoints, and smoothing of the metric values per cutpoint using Generalized Additive Models. Various plotting functions are included. For an overview of the package see Thiele and Hirschfeld (2021) <doi:10.18637/jss.v098.i11>.