MyNixOS website logo
Description

Plot Fan Plots for Cytometry Data using 'ggplot2'.

An implementation of Fan plots for cytometry data in 'ggplot2'. For reference see Britton, E.; Fisher, P. & J. Whitley (1998) The Inflation Report Projections: Understanding the Fan Chart <https://www.bankofengland.co.uk/quarterly-bulletin/1998/q1/the-inflation-report-projections-understanding-the-fan-chart>).

cytofan

Travis-CI Build Status

cytofan implements the concept of fan plots (Britton, E.; Fisher, P. & J. Whitley (1998) The Inflation Report Projections: Understanding the Fan Chart) for cytometry data in ggplot2.

The cytofan package was implemented following up on a gist written shortly after the fanplot package was released. Compared to ggfan, cytofan uses categorical data as input on the x axis.

Installation

You can install cytofan from github with:

# install.packages("devtools")
devtools::install_github("yannabraham/cytofan")

Example

cytofan can be used to visualize differences between populations identifed using mass cytometry:

library(cytofan)
#> Loading required package: ggplot2
library(bodenmiller)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(reshape2)

data("refPhenoMat")
data("refAnnots")

bind_cols(refAnnots,
          as.data.frame(refPhenoMat)) %>%
  melt(.,measure.vars=colnames(refPhenoMat),
       variable.name='Channel') %>%
  filter(Cells %in% c('cd4+','cd8+','igm+','igm-')) %>%
  ggplot(aes(x=Channel,y=value))+
  geom_fan()+
  facet_grid(Cells~.)

Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows