Description
Making "Deduplicated" Functions.
Description
Contains one main function deduped() which speeds up slow, vectorized functions by only performing computations on the unique values of the input and expanding the results at the end.
README.md
deduped
deduped
contains one main function deduped()
which speeds up slow, vectorized functions by only performing computations on the unique values of the input and expanding the results at the end.
One particular use case of deduped()
that I come across a lot is when using basename()
and dirname()
on the file_path
column after reading multiple CSVs (e.g. with readr::read_csv(..., id="file_path")
). basename()
and dirname()
are surprisingly slow (especially on Windows), and most of the column is duplicated.
Installation
You can install the released version of deduped
from CRAN with:
install.packages("deduped")
And the development version from GitHub:
if(!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("orgadish/deduped")
Examples
Basic Example
library(deduped)
set.seed(0)
slow_func <- function(ii) {
for (i in ii) {
Sys.sleep(0.001)
}
}
# deduped()
unique_vec <- sample(LETTERS, 10)
unique_vec
#> [1] "N" "Y" "D" "G" "A" "B" "K" "Z" "R" "V"
duplicated_vec <- sample(rep(unique_vec, 100))
length(duplicated_vec)
#> [1] 1000
system.time({
x1 <- deduped(slow_func)(duplicated_vec)
})
#> user system elapsed
#> 0.097 0.015 0.134
system.time({
x2 <- slow_func(duplicated_vec)
})
#> user system elapsed
#> 0.032 0.013 1.197
all.equal(x1, x2)
#> [1] TRUE
# deduped() can be combined with lapply() or purrr::map().
unique_list <- lapply(1:5, function(j) sample(LETTERS, j, replace = TRUE))
str(unique_list)
#> List of 5
#> $ : chr "M"
#> $ : chr [1:2] "P" "Y"
#> $ : chr [1:3] "D" "E" "L"
#> $ : chr [1:4] "B" "I" "J" "N"
#> $ : chr [1:5] "W" "T" "F" "E" ...
# Create a list with significant duplication.
duplicated_list <- sample(rep(unique_list, 100))
length(duplicated_list)
#> [1] 500
system.time({
y1 <- deduped(lapply)(duplicated_list, slow_func)
})
#> user system elapsed
#> 0.001 0.000 0.018
system.time({
y2 <- lapply(duplicated_list, slow_func)
})
#> user system elapsed
#> 0.025 0.016 1.756
all.equal(y1, y2)
#> [1] TRUE
file_path
Example
# Create multiple CSVs to read
tf <- tempfile()
dir.create(tf)
# Duplicate mtcars 10,000x and write 1 CSV for each value of `am`
duplicated_mtcars <- dplyr::slice(mtcars, rep(1:nrow(mtcars), 10000))
invisible(sapply(
dplyr::group_split(duplicated_mtcars, am),
function(k) {
file_name <- paste0("mtcars_", unique(k$am), ".csv")
readr::write_csv(k, file.path(tf, file_name))
}
))
duplicated_mtcars_from_files <- readr::read_csv(
list.files(tf, full.names = TRUE),
id = "file_path",
show_col_types = FALSE
)
dplyr::count(duplicated_mtcars_from_files, basename(file_path))
#> # A tibble: 2 × 2
#> `basename(file_path)` n
#> <chr> <int>
#> 1 mtcars_0.csv 190000
#> 2 mtcars_1.csv 130000
system.time({
df1 <- dplyr::mutate(
duplicated_mtcars_from_files,
file_name = basename(file_path)
)
})
#> user system elapsed
#> 0.104 0.000 0.104
system.time({
df2 <- dplyr::mutate(
duplicated_mtcars_from_files,
file_name = deduped(basename)(file_path)
)
})
#> user system elapsed
#> 0.010 0.002 0.013
all.equal(df1, df2)
#> [1] TRUE
unlink(tf)