MyNixOS website logo
Description

Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes.

Detection of runs of homozygosity and of heterozygosity in diploid genomes using two methods: sliding windows (Purcell et al (2007) <doi:10.1086/519795>) and consecutive runs (Marras et al (2015) <doi:10.1111/age.12259>).

detectRUNS

detectRUNS is a R package for the detection of runs of homozygosity (ROH/ROHom) and of heterozygosity (ROHet, a.k.a. "heterozygosity-rich regions") in diploid genomes. Besides runs detection, it implements several functions to summarize and plot results.

Installation

detectRUNS is installed as a standard R package. Some core functions are written in C++ to increase efficieny of calculations: this makes use of the R library Rcpp. detectRUNS uses other R packages for data manipulation and plots. These packages are set as Imports, and detectRUNS will try to install any missing packages upon installation.

Dependencies

detectRUNS imports: plyr, iterators, itertools, ggplot2, reshape2, Rcpp, gridExtra, data.table detectRUNS suggests: testthat, knitr, rmarkdown, prettydoc

Documentation

Please see the package vignette for a complete tutorial. What follows is a minimal working example to give the gist of the tool.

Example

This is a basic example which shows you how to detect runs of homozygosity (ROH):

#1) detectRUNS (sliding-windows method)
genotypeFile <- system.file("extdata", "Kijas2016_Sheep_subset.ped", package = "detectRUNS")
mapFile <- system.file("extdata", "Kijas2016_Sheep_subset.map", package = "detectRUNS")
# calculating runs with sliding window approach
\dontrun{
 # skipping runs calculation
 runs <- slidingRUNS.run(genotypeFile, mapFile, windowSize = 15, threshold = 0.1,
 minSNP = 15, ROHet = FALSE,  maxOppWindow = 1, maxMissWindow = 1, maxGap=10^6,
 minLengthBps = 100000,  minDensity = 1/10000)
}
# loading pre-calculated data
runsFile <- system.file("extdata", "Kijas2016_Sheep_subset.sliding.csv", package="detectRUNS")
colClasses <- c(rep("character", 3), rep("numeric", 4)  )
runs <- read.csv2(runsFile, header = TRUE, stringsAsFactors = FALSE,  colClasses = colClasses)

#2) summarise results
summaryList <- summaryRuns(runs = runs, mapFile = mapFilePath, genotypeFile = genotypeFilePath, Class = 6, snpInRuns = TRUE)

#3) plot results
plot_Runs(runs = runs)
Metadata

Version

0.9.6

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows