Description
CML and Bayesian Calibration of Multistage Tests.
Description
Conditional Maximum Likelihood Calibration and data management of multistage tests. Supports polytomous items and incomplete designs with linear as well as multistage tests. Extended Nominal Response and Interaction models, DIF and profile analysis. See Robert J. Zwitser and Gunter Maris (2015)<doi:10.1007/s11336-013-9369-6>.
README.md
DexterMST
DexterMST is an R package acting as a companion to dexter and adding facilities to manage and analyze data from multistage tests (MST). It includes functions for importing and managing test data, assessing and improving the quality of data through basic test and item analysis, and fitting an IRT model, all adapted to the peculiarities of MST designs. DexterMST typically works with project database files saved on disk.
Installation
install.packages('dexterMST')
If you encounter a bug, please post a minimal reproducible example on github. We post news and examples on a blog, it’s also the place for general questions.
Example
Here is an example for a simple two-stage test.
library(dexterMST)
library(dplyr)
# start a project
db = create_mst_project(":memory:")
items = data.frame(item_id=sprintf("item%02i",1:70), item_score=1, delta=sort(runif(70,-1,1)))
design = data.frame(item_id=sprintf("item%02i",1:70),
module_id=rep(c('M4','M2','M5','M1','M6','M3', 'M7'),each=10))
routing_rules = routing_rules = mst_rules(
`124` = M1[0:5] --+ M2[0:10] --+ M4,
`125` = M1[0:5] --+ M2[11:15] --+ M5,
`136` = M1[6:10] --+ M3[6:15] --+ M6,
`137` = M1[6:10] --+ M3[16:20] --+ M7)
scoring_rules = data.frame(
item_id = rep(items$item_id,2),
item_score= rep(0:1,each=nrow(items)),
response= rep(0:1,each=nrow(items))) # dummy respons
db = create_mst_project(":memory:")
add_scoring_rules_mst(db, scoring_rules)
create_mst_test(db,
test_design = design,
routing_rules = routing_rules,
test_id = 'sim_test',
routing = "all")
We can now plot the design
# plot test designs for all tests in the project
design_plot(db)
We now simulate data:
theta = rnorm(3000)
dat = sim_mst(items, theta, design, routing_rules,'all')
dat$test_id='sim_test'
dat$response=dat$item_score
add_response_data_mst(db, dat)
# IRT, extended nominal response model
f = fit_enorm_mst(db)
head(f)
item_id | item_score | beta | SE_beta |
---|---|---|---|
item01 | 1 | -0.9091126 | 0.0627456 |
item02 | 1 | -1.0254786 | 0.0629096 |
item03 | 1 | -0.9740383 | 0.0628192 |
item04 | 1 | -0.8511593 | 0.0627179 |
item05 | 1 | -0.8545661 | 0.0627186 |
item06 | 1 | -0.7966628 | 0.0627248 |
# ability estimates per person
rsp_data = get_responses_mst(db)
abl = ability(rsp_data, parms = f)
head(abl)
booklet_id | person_id | booklet_score | theta |
---|---|---|---|
124 | 1 | 1 | -3.8957687 |
136 | 10 | 18 | 0.6531690 |
124 | 100 | 14 | -0.6131689 |
124 | 1000 | 12 | -0.8930060 |
124 | 1001 | 7 | -1.6962625 |
124 | 1002 | 9 | -1.3464286 |
# ability estimates without item Item01
abl2 = ability(rsp_data, parms = f, item_id != "item01")
# plausible values
pv = plausible_values(rsp_data, parms = f, nPV = 5)
head(pv)
booklet_id | person_id | booklet_score | PV1 | PV2 | PV3 | PV4 | PV5 |
---|---|---|---|---|---|---|---|
124 | 1 | 1 | -2.1173109 | -2.8452992 | -1.8224958 | -2.2535875 | -2.7653987 |
124 | 100 | 14 | -0.9541693 | -0.3218994 | -0.5133103 | -0.7913669 | -0.6746883 |
124 | 1000 | 12 | -0.3432901 | -1.2258409 | -0.6831306 | -0.6257580 | -1.2091710 |
124 | 1001 | 7 | -1.3945366 | -1.7253245 | -1.6556693 | -1.4768176 | -1.3666073 |
124 | 1002 | 9 | -1.2284339 | -1.0867596 | -1.2299253 | -0.3411735 | -0.9039256 |
124 | 1003 | 4 | -1.9307668 | -2.9527556 | -1.7905466 | -1.6767628 | -2.4335210 |