MyNixOS website logo
Description

Meta-Analysis of Phase I Dose-Finding Early Clinical Trials.

Meta-analysis approaches for Phase I dose finding early phases clinical trials in order to better suit requirements in terms of maximum tolerated dose (MTD) and maximal dose regimen (MDR). This package has currently three different approaches: (a) an approach proposed by Zohar et al, 2011, <doi:10.1002/sim.4121> (denoted as ZKO), (b) the Variance Weighted pooling analysis (called VarWT) and (c) the Random Effects Model Based (REMB) algorithm, where user can input his/her own model based approach or use the existing random effect logistic regression model (named as glimem) through the 'dfmeta' package.

CRAN Version

dfmeta

Description

The dfmeta package includes meta-analysis approaches for Phase I dose finding early phases clinical trials in order to better suit requirements in terms of the maximum tolerated dose (MTD) and the maximal dose regimem (MDR).

Installation

Establish Version

The 1st version of the package dfmeta will be available on CRAN very soon and it will be loaded via

install.packages("dfmeta")
library(dfmeta) 

Development Version

To install the dfmeta package from GitHub, first make sure that you can install the necessary depended packages such as stats4, lme4, plyr etc. Once the depended packages are successfully installed, you can install dfmeta from GitHub using the devtools package by executing the following in R:

if (!require(devtools)){
  install.packages("devtools") 
  library(devtools) 
}

install_github("artemis-toumazi/dfmeta")

If installation fails, please let us know by filing an issue.

Details on formula syntax, families and link functions, as well as prior distributions can be found on the help page of the dfmeta function:

help(dfmeta) 

FAQ

What is the best way to ask a question or propose a new feature?

You can either open an issue on github or write me an email to ([email protected]).

Metadata

Version

1.0.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows