MyNixOS website logo
Description

Diffusion Distance for Complex Networks.

Enables the evaluation of diffusion distances for complex single-layer networks. Given a network one can define different types of Laplacian (or transition) matrices corresponding to different continuous-time random walks dynamics on the network. This package enables the evaluation of Laplacians, stochastic matrices, and the corresponding diffusion distance matrices. The metric structure induced by the network-driven process is richer and more robust than the one given by shortest-paths and allows to study the geometry induced by different types of diffusion-like communication mechanisms taking place on complex networks. For more details see: De Domenico, M. (2017) <doi:10.1103/physrevlett.118.168301> and Bertagnolli, G. and De Domenico, M. (2021) <doi:10.1103/PhysRevE.103.042301>.

diffudist

Lifecycle:experimental R-CMD-check CRANstatus

Overview

The diffudist package provides several functions for evaluating the diffusion distance between nodes of a complex network.

Installation

# Or the development version from GitHub
# install.packages("devtools")
devtools::install_github("gbertagnolli/diffudist")

Usage

Additionally to diffudist you will also need the igraph package, because the main arguments of the functions in diffudist are networks as igraph objects.

library(diffudist)
library(igraph)
#> 
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#> 
#>     decompose, spectrum
#> The following object is masked from 'package:base':
#> 
#>     union
library(ggplot2)
igraph_options(
  vertex.frame.color = "white",
  vertex.color = "#00B4A6",
  label.family = "sans-serif")

Examples

N <- 100
g <- sample_pa(N, directed = FALSE)
deg_g <- degree(g)
vertex_labels <- 1:N
vertex_labels[which(deg_g < quantile(deg_g, .9))] <- NA
plot(g, vertex.label = vertex_labels, vertex.size = 6 + 10 * (deg_g - min(deg_g)) / max(deg_g))

D <- get_distance_matrix(g, tau = 2, type = "Normalized Laplacian", verbose = FALSE)
# or, for short:
# get_DDM(g, tau = 2, type = "Normalized Laplacian", verbose = FALSE)
MERW_Pt <- get_diffusion_probability_matrix(g, tau = 2, type = "MERW")
#> Unweighted network.
#> Evaluating the MERW Normalized Laplacian matrix

The probability transition matrix returned from get_diffusion_probability_matrix (or its shortened version get_diffu_Pt) is the matrix eτ**Lrw. The diffusion dynamics is controlled by the specific Laplacian matrix Lrw = I − Trw, where Trw is the jump matrix of the discrete-time random walk corresponding to our continuous-time dynamics.

Let us check that MERW_Pt is an actual stochastic (transition) matrix, i.e., that its rows are probability vectors

if (sum(MERW_Pt)  - N > 1e-6) {
  print("MERW_Pt is not a stochastic matrix")
} else {
  print("MERW_Pt is a stochastic matrix")
}
#> [1] "MERW_Pt is a stochastic matrix"

Compute diffusion distances from the Probability matrix MERW_Pt as follows:

if (requireNamespace("parallelDist", quietly = TRUE)) {
  # parallel dist
  D_MERW <- as.matrix(parallelDist::parDist(MERW_Pt))
} else {
  # dist
  D_MERW <- as.matrix(stats::dist(MERW_Pt))
}

Plot distance matrix

And finally plot the distance matrices (requires ggplot2 and ggdengro)

plot_distance_matrix(D, show_dendro = FALSE) +
  scale_y_discrete(breaks = vertex_labels[!is.na(vertex_labels)])

plot_distance_matrix(D_MERW, show_dendro = FALSE) +
  scale_y_discrete(breaks = vertex_labels[!is.na(vertex_labels)])

Adding the hierarchical clustering, i.e., visualising a dendrogram.

plot_distance_matrix(D)

plot_distance_matrix(D_MERW)

References

Bertagnolli, G., & De Domenico, M. (2021). Diffusion geometry of multiplex and interdependent systems. Physical Review E, 103(4), 042301. DOI: 10.1103/PhysRevE.103.042301, arXiv: 2006.13032, my-website.

Metadata

Version

1.0.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows