Description
Bayesian Estimation of DINA Model.
Description
Estimate the Deterministic Input, Noisy "And" Gate (DINA) cognitive diagnostic model parameters using the Gibbs sampler described by Culpepper (2015) <doi:10.3102/1076998615595403>.
README.md
dina
R package
Estimate the Deterministic Input, Noisy And Gate (DINA) cognitive diagnostic model parameters using the Gibbs sampler described by Culpepper (2015) <doi: 10.3102/1076998615595403>.
Installation
You can install dina
from CRAN using:
install.packages("dina")
Or, you can be on the cutting-edge development version on GitHub using:
if(!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("tmsalab/dina")
Usage
To use the dina
package, load it into R using:
library("dina")
From there, the DINA CDM can be estimated using:
dina_model = dina(<data>, <q>, chain_length = 10000)
To simulate item data under DINA, use:
# Set a seed for reproducibility
set.seed(888)
# Setup Parameters
N = 15 # Number of Examinees / Subjects
J = 10 # Number of Items
K = 2 # Number of Skills / Attributes
# Assign slipping and guessing values for each item
ss = gs = rep(.2, J)
# Simulate identifiable Q matrix
Q = sim_q_matrix(J, K)
# Simulate subject attributes
subject_alphas = sim_subject_attributes(N, K)
# Item data
items_dina = sim_dina_items(subject_alphas, Q, ss, gs)
Authors
Steven Andrew Culpepper and James Joseph Balamuta
Citing the dina
package
To ensure future development of the package, please cite dina
package if used during an analysis or simulations. Citation information for the package may be acquired by using in R:
citation("dina")
License
GPL (>= 2)