MyNixOS website logo
Description

Model Wrappers for Discriminant Analysis.

Bindings for additional classification models for use with the 'parsnip' package. Models include flavors of discriminant analysis, such as linear (Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>), regularized (Friedman (1989) <doi:10.1080/01621459.1989.10478752>), and flexible (Hastie, Tibshirani, and Buja (1994) <doi:10.1080/01621459.1994.10476866>), as well as naive Bayes classifiers (Hand and Yu (2007) <doi:10.1111/j.1751-5823.2001.tb00465.x>).

discrim

CRANstatus Codecov testcoverage R-CMD-check Lifecycle:experimental

discrim contains simple bindings to enable the parsnip package to fit various discriminant analysis models, such as

  • Linear discriminant analysis (LDA, simple and regularized)
  • Quadratic discriminant analysis (QDA, simple and regularized)
  • Regularized discriminant analysis (RDA, via Friedman (1989))
  • Flexible discriminant analysis (FDA) using MARS features
  • Naive Bayes models

Installation

You can install the released version of discrim from CRAN with:

install.packages("discrim")

And the development version from GitHub with:

# install.packages("pak")
pak::pak("tidymodels/discrim")

Available Engines

The discrim package provides engines for the models in the following table.

modelenginemode
discrim_flexibleearthclassification
discrim_linearMASSclassification
discrim_linearmdaclassification
discrim_linearsdaclassification
discrim_linearsparsediscrimclassification
discrim_quadMASSclassification
discrim_quadsparsediscrimclassification
discrim_regularizedklaRclassification
naive_BayesklaRclassification
naive_Bayesnaivebayesclassification

Example

Here is a simple model using a simulated two-class data set contained in the package:

library(discrim)

parabolic_grid <-
  expand.grid(X1 = seq(-5, 5, length = 100),
              X2 = seq(-5, 5, length = 100))

fda_mod <-
  discrim_flexible(num_terms = 3) %>%
  # increase `num_terms` to find smoother boundaries
  set_engine("earth") %>%
  fit(class ~ ., data = parabolic)

parabolic_grid$fda <-
  predict(fda_mod, parabolic_grid, type = "prob")$.pred_Class1

library(ggplot2)
ggplot(parabolic, aes(x = X1, y = X2)) +
  geom_point(aes(col = class), alpha = .5) +
  geom_contour(data = parabolic_grid, aes(z = fda), col = "black", breaks = .5) +
  theme_bw() +
  theme(legend.position = "top") +
  coord_equal()
Scatter chart. X1 along the x-axis, X2 along the y-axis. points are scattered, with a trend between X1 and X2. Most of the middle points are colored and labeled Class2, with the remaining points labeled Class1. Two connected straight lines, doing its best to separate the two classes.

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Metadata

Version

1.0.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows