MyNixOS website logo
Description

Use Dirichlet Laplace Prior to Solve Linear Regression Problem and Do Variable Selection.

The Dirichlet Laplace shrinkage prior in Bayesian linear regression and variable selection, featuring: utility functions in implementing Dirichlet-Laplace priors such as visualization; scalability in Bayesian linear regression; penalized credible regions for variable selection.

dlbayes

The goal of dlbayes is to implement the Dirichlet-Laplace shrinkage prior in Bayesian linear regression and variable selection, featuring:

  • utility functions to implement Dirichlet-Laplace priors;
  • scalability in Bayesian linear regression;
  • variable selection based on penalized credible regions.

Installation

You can install the released version of dlbayes from CRAN with:

install.packages("dlbayes")

Example

  rho=0.5
  p=1000
  n=100
  # set up correlation matrix
  m<-matrix(NA,p,p)
  for(i in 1:p){
    for(j in i:p){
      m[i,j]=rho^(j-i)
    }
  }
  m[lower.tri(m)]<-t(m)[lower.tri(m)]
  # generate x
  library("mvtnorm")
  x=rmvnorm(n,mean=rep(0,p),sigma=m)
  # generate beta
  beta=c(rep(0,10),runif(n=5,min=-1,max=1),rep(0,20),runif(n=5,min=-1,max=1),rep(0,p-40))
  # generate y
  y=x%*%beta+rnorm(n)
  #tuning hyperparameter [1/max(n,p),1/2]
  hyper=dlhyper(x,y)
  # MCMC sampling
  dlresult=dl(x,y,hyper=hyper)
  
  # visualization of Dirichlet-Lapace priors
  # set "plt=TRUE" to make plots 
  # theta=dlprior(hyper=1/2,p=10000000,plt=TRUE,min=-5,max=5,sigma=1)
  
  # summary of posterior samples 
  da=dlanalysis(dlresult,alpha=0.05)
  da$betamean
  da$betamedian
  da$LeftCI
  da$RightCI
  
  # variable selection
  betaresult=dlvs(dlresult)
  # indices of selected variables 
  num=which(betaresult!=0)
  # coefficients of selected variable
  coef=betaresult[num]

Reference

Bhattacharya, A., Pati, D., Pillai, N. S., and Dunson, D. B. (2015). "Dirichlet–Laplace priors for optimal shrinkage." Journal of the American Statistical Association, 110(512): 1479–1490.

Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). "Fast sampling with Gaussian scale-mixture priors in high-dimensional regression." Biomoetrika, 103(4): 985–991.

Bondell, H. D. and Reich, B. J. (2012). "Consistent high-dimensional Bayesian variable selection via penalized credible regions." Journal of the American Statistical Association, 107(500): 1610–1624.

Metadata

Version

0.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows