MyNixOS website logo
Description

Distributed Lag Non-Linear Models.

Collection of functions for distributed lag linear and non-linear models.

dlnm: Distributed Lag Non-Linear Models

CRAN Version Monthly Downloads Total Downloads

The package dlnm contains functions to specify and interpret distributed lag linear (DLMs) and non-linear (DLNMs) models. The DLM/DLNM methodology is illustrated in detail in a series of articles referenced at the end of this document.

Info on the dlnm package

The package dlnm is available on the Comprehensive R Archive Network (CRAN), with info at the related web page (https://cran.r-project.org/package=dlnm). A development website is available on GitHub (https://github.com/gasparrini/dlnm).

For a short summary of the functionalities of this package, refer to the main help page by typing:

help(dlnm)

in R after installation (see below). For a more comprehensive overview, refer to the main vignette of the package that can be opened with:

vignette("dlnmOverview")

Installation

The last version officially released on CRAN can be installed directly within R by typing:

install.packages("dlnm")

R code in published articles

Several peer-reviewed articles and documents provide R code illustrating methodological developments of dlnm or replicating substantive results using this package. An updated version of the code can be found at the GitHub (httpsgithub.com/gasparrini) or personal web page (http://www.ag-myresearch.com) of the package maintainer.

References:

Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. Journal of Statistical Software. 2011; 43(8):1-20. [freely available here]

Gasparrini A, Scheipl F, Armstrong B, Kenward MG. A penalized framework for distributed lag non-linear models. Biometrics. 2017;73(3):938-948. [freely available here]://

Gasparrini A. Modelling lagged associations in environmental time series data: a simulation study. Epidemiology. 2016; 27(6):835-842. [freely available here]

Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Statistics in Medicine. 2014; 33(5):881-899. [freely available here].

Gasparrini A., Armstrong, B.,Kenward M. G. Distributed lag non-linear models. Statistics in Medicine. 2010; 29(21):2224-2234. [freely available here].

Gasparrini A., Armstrong, B., Kenward M. G. Reducing and meta-analyzing estimates from distributed lag non-linear models. BMC Medical Research Methodology. 2013; 13(1):1. [freely available here].

Armstrong, B. Models for the relationship between ambient temperature and daily mortality. Epidemiology. 2006, 17(6):624-31. [available here].

Metadata

Version

2.4.7

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows