Simulate Dynamic Networks using Exponential Random Graph Models (ERGM) Family.
dnr
Description
This package provides functions for fitting lagged exponential family models on dynamic network data, simulation from the models and model diagnostics.
Funding
This package was developed with help from ARO YIP award #W911NF-14-1-0577.
References
Abhirup Mallik & Zack W. Almquist (2019) Stable Multiple Time Step Simulation/Prediction From Lagged Dynamic Network Regression Models, Journal of Computational and Graphical Statistics, 28:4, 967-979, DOI: 10.1080/10618600.2019.1594834
Abhirup Mallik and Zack W. Almquist (2017). "An R Package for Dynamic Network Regression." Working paper. University of Minnesota.
Zack W. Almquist and Carter T. Butts (forthcoming). "Dynamic Network Analysis with Missing Data: Theory and Methods." Statistica Sinica. doi:10.5705/ss.202016.0108.
Zack W. Almquist and Carter T. Butts. (2013). "Dynamic Network Logistic Regression: A Logistic Choice Analysis of Inter- and Intra-group Blog Citation Dynamics in the 2004 US Presidential Election." Political Analysis, 21(4), 430-448.
Zack W. Almquist and Carter T. Butts. (2014). "Bayesian Analysis of Dynamic Network Regression with Joint Edge/Vertex Dynamics." In Bayesian Inference in the Social Sciences. Ed. by I. Jeliazkov and X.-S. Yang. Hoboken, New Jersey: John Wiley & Sons.