MyNixOS website logo
Description

Multivariate Dose-Response Meta-Analysis.

Estimates dose-response relations from summarized dose-response data and to combines them according to principles of (multivariate) random-effects models.

Multivariate Dose-Response Meta-Analysis (dosresmeta)

The package dosresmeta consists of a collection of functions to estimate dose-response relations from summarized dose-response data for both continuous and binary outcomes, and to combine them according to principles of (multivariate) random-effects model. The methodology is illustrated in the referenced article.

Info on the dosresmeta package

The package is available on the Comprehensive R Archive Network (CRAN), with info at the related web page (https://CRAN.R-project.org/package=dosresmeta). A development website is available on GitHub (https://github.com/alecri/dosresmeta).

For a short summary of the package, refer to the main help page by typing:

help("dosresmeta-package")

in R after installation (see below).

Installation

The last version officially released on CRAN can be installed directly within R by typing:

install.packages("dosresmeta")

A version still under developement is avaiable on GitHub and can be installed by typing:

install.packages("devtools")
devtools::install_github("alecri/dosresmeta")

R code in published articles

Several peer-reviewed articles and documents provide R code illustrating methodological developments or replicating substantive results. An updated version of the code can be found at the GitHub (https://github.com/alecri) or personal web page (https://alecri.github.io/software/dosresmeta.html) of the package maintainer.

References:

Crippa A, Orsini N. Multivariate Dose-Response Meta-Analysis: the dosresmeta R Package. Journal of Statistical Software, Code Snippets,. 2016; 72(1), 1-15. doi:10.18637/jss.v072.c01. [freely available here]

Crippa A, Orsini N. Dose-response meta-analysis of differences in means. BMC Medical Research Methodology. 2016 Aug 2;16(1):91. [freely available here] [GitHub repository at this link]

Discacciati A, Crippa A, Orsini N. Goodness of fit tools for dose-response meta-analysis of binary outcomes. Research Synthesis Methods. 2015 Jan 1. doi: 10.1002/jrsm.1194. [freely available here] [GitHub repository at this link]

Metadata

Version

2.0.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows