MyNixOS website logo
Description

Methodologies for Functional Data Based on the Epigraph and Hypograph Indices.

Implements methods for functional data analysis based on the epigraph and hypograph indices. These methods transform functional datasets, whether in one or multiple dimensions, into multivariate datasets. The transformation involves applying the epigraph, hypograph, and their modified versions to both the original curves and their first and second derivatives. The calculation of these indices is tailored to the dimensionality of the functional dataset, with special considerations for dependencies between dimensions in multidimensional cases. This approach extends traditional multivariate data analysis techniques to the functional data setting. A key application of this package is the EHyClus method, which enhances clustering analysis for functional data across one or multiple dimensions using the epigraph and hypograph indices.

ehymet

Build_Status DOI DOI

The ehymet (Methodologies for functional data based on the epigraph and hypograph indices) package define the epigraph, the hypograph and their modified versions for functional datasets in one and multiple dimensions. These indices allow to transform a functional dataset into a multivariate one, where usual clustering techniques can be applied. This package implements EHyClus method for clustering functional data in one or multiple dimension.

Related Papers:

  • Belén Pulido, Alba M. Franco-Pereira, Rosa E. Lillo (2023). “A fast epigraph and hypograph-based approach for clustering functional data.” Statistics and Computing, 33, 36. doi: 10.1007/s11222-023-10213-7

  • Belén Pulido, Alba M. Franco-Pereira, Rosa E. Lillo (2023). “The epigraph and the hypograph indices as useful tools for clustering multivariate functional data.” doi: 10.48550/arXiv.2307.16720

Installation

You can install the development version of ehymet from github using the remotes package:

# install.packages("remotes")
remotes::install_github("bpulidob/ehymet")
Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows