MyNixOS website logo
Description

The Extreme Learning Machine Algorithm.

Training and predict functions for Single Hidden-layer Feedforward Neural Networks (SLFN) using the Extreme Learning Machine (ELM) algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times (it doesn't need any iterative tuning, this makes learning time very fast) and there is no need to set any other parameters like learning rate, momentum, epochs, etc. This is a reimplementation of the 'elmNN' package using 'RcppArmadillo' after the 'elmNN' package was archived. For more information, see "Extreme learning machine: Theory and applications" by Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (2006), Elsevier B.V, <doi:10.1016/j.neucom.2005.12.126>.

elmNNRcpp ( Extreme Learning Machine )


The elmNNRcpp package is a reimplementation of elmNN using RcppArmadillo after the elmNN package was archived. Based on the documentation of the elmNN it consists of, "Training and predict functions for SLFN ( Single Hidden-layer Feedforward Neural Networks ) using the ELM algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times ( it doesn't need any iterative tuning, this makes learning time very fast ) and there is no need to set any other parameters like learning rate, momentum, epochs, etc.". More details can be found in the package Documentation, Vignette and blog-post.

To install the package from CRAN use,


install.packages("elmNNRcpp")



and to download the latest version from Github use the install_github function of the devtools package,


remotes::install_github('mlampros/elmNNRcpp')



Use the following link to report bugs/issues,

https://github.com/mlampros/elmNNRcpp/issues


Citation:

If you use the code of this repository in your paper or research please cite both elmNNRcpp and the original articles / softwarehttps://CRAN.R-project.org/package=elmNNRcpp:


@Manual{,
  title = {{elmNNRcpp}: The Extreme Learning Machine Algorithm},
  author = {Lampros Mouselimis},
  year = {2022},
  note = {R package version 1.0.4},
  url = {https://CRAN.R-project.org/package=elmNNRcpp},
}

Metadata

Version

1.0.4

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows