MyNixOS website logo
Description

Bayesian Emulation of Computer Programs.

Allows one to estimate the output of a computer program, as a function of the input parameters, without actually running it. The computer program is assumed to be a Gaussian process, whose parameters are estimated using Bayesian techniques that give a PDF of expected program output. This PDF is conditional on a training set of runs, each consisting of a point in parameter space and the model output at that point. The emphasis is on complex codes that take weeks or months to run, and that have a large number of undetermined input parameters; many climate prediction models fall into this class. The emulator essentially determines Bayesian posterior estimates of the PDF of the output of a model, conditioned on results from previous runs and a user-specified prior linear model. The package includes functionality to evaluate quadratic forms efficiently.

Gaussian processes for complex code evaluation: the emulator package

CRAN_Status_Badge

Overview

To cite the emulator package in publications please use Hankin 2005. The emulator package provides R-centric functionality for working with Gaussian processes. The focus is on approximate evaluation of complex computer codes. The package is part of the the BACCO suite of software.

Installation

You can install the released version of permutations from CRAN with:

# install.packages("emulator")  # uncomment this to use the package
library("emulator")
#> Loading required package: mvtnorm

The package is maintained on github.

The emulator package in use

Suppose we have a complicated computer program which takes three parameters as input, and we can run it a total of seven times at different points in parameter space:

val
#>       alpha   beta  gamma
#> [1,] 0.7857 0.9286 0.6429
#> [2,] 0.0714 0.3571 0.2143
#> [3,] 0.5000 0.2143 0.7857
#> [4,] 0.3571 0.7857 0.3571
#> [5,] 0.9286 0.5000 0.0714
#> [6,] 0.2143 0.0714 0.5000
#> [7,] 0.6429 0.6429 0.9286
d
#> [1] 3.96 1.06 2.93 2.49 2.11 1.26 4.61

Above, val shows the seven points in parameter space at which we have run the code, and d shows the output at those points. Now suppose we wish to know what the code would have produced at point $p=(0.5, 0.5, 0.5)$, at which the point has not actually been run. This is straightforward with the package:

p <- c(0.5,0.5,0.)
fish <- c(1,1,4)
A <- corr.matrix(val,scales=fish)
interpolant(p, d, val, A = A, scales=fish, give=TRUE)
#> $betahat
#>  const  alpha   beta  gamma 
#> -0.363  1.221  1.905  3.072 
#> 
#> $prior
#>      [,1]
#> [1,]  1.2
#> 
#> $beta.var
#>        const  alpha   beta  gamma
#> const  0.995 -0.510 -0.184 -0.713
#> alpha -0.510  0.950 -0.275  0.172
#> beta  -0.184 -0.275  0.914 -0.192
#> gamma -0.713  0.172 -0.192  1.524
#> 
#> $beta.marginal.sd
#> const alpha  beta gamma 
#> 0.997 0.975 0.956 1.234 
#> 
#> $sigmahat.square
#> [1] 0.64
#> 
#> $mstar.star
#>      [,1]
#> [1,] 1.42
#> 
#> $cstar
#> [1] 0.165
#> 
#> $cstar.star
#> [1] 0.2
#> 
#> $Z
#> [1] 0.358

Above, object fish is a vector of roughness length (“scales”) corresponding to the small-scale covariance properties of our function. This may be estimated from the problem or from the datapoints. Matrix A is a normalized variance-covariance matrix for the points of val.

The output gives various aspects of the Gaussian process associated with the original observations. The most interesting one is mstar.star which indicates that the best estimate for the code’s output, if it were to be run at point $p$, would be about 2.41.

References

R. K. S. Hankin 2005. “Introducing BACCO, an R bundle for Bayesian analysis of computer code output”. Journal of Statistical Software, 14(16)

Metadata

Version

1.2-24

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows