MyNixOS website logo
Description

Analysis and Simulation of Plant Disease Progress Curves.

Analysis and visualization of plant disease progress curve data. Functions for fitting two-parameter population dynamics models (exponential, monomolecular, logistic and Gompertz) to proportion data for single or multiple epidemics using either linear or no-linear regression. Statistical and visual outputs are provided to aid in model selection. Synthetic curves can be simulated for any of the models given the parameters. See Laurence V. Madden, Gareth Hughes, and Frank van den Bosch (2007) <doi:10.1094/9780890545058> for further information on the methods.

epifitter

CRAN Downloads

Provides a set of tools for aiding in the visualization, description, and comparison of plant disease progress curve (DPC) data. A DPC depict the change in a disease-intensity variable measured sequentially at different times during the epidemics. Their analysis, that may include fitting "classic" population dynamics models (e.g. logistic, monomolecular, Gompertz), allows gaining understanding of the epidemiological processes, but is most used for comparing epidemics.

The mathematics behind model fitting is straightforward and general-purpose spreadsheet or statistical softwares can be used to perform the calculations and select the "best" model. What epifitter does is to provide the analyst with R functions for performing several tasks commonly used for the temporal analysis of epidemics, including graphical output.

Current implementation includes functions for the analyst to:

  • Fit classic population dynamics models using linear and nonlinear approaches
  • Select models based on statistical and visual analysis
  • Calculate the area under the disease progress curve
  • Compare epidemics via visual inference
  • Simulate synthetic epidemics of various shapes and uncertainty

Quick start

Install the stable release from CRAN.

install.packages("epifitter")

The development version of epifitter is available from GitHub. The devtools package, available from CRAN, is required for installation.

if (!require(devtools)) {
  install.packages("devtools")
}

devtools::install_github("AlvesKS/epifitter")

Meta

  • Please report any issues or bugs.
  • All code is licensed MIT
  • To cite epifitter, please use the output from citation("epifitter")
  • Please note that epifitter is released with Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Metadata

Version

0.3.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows