MyNixOS website logo
Description

Open Source Ophthalmic Data Sets Curated for R.

Open source data allows for reproducible research and helps advance our knowledge. The purpose of this package is to collate open source ophthalmic data sets curated for direct use. This is real life data of people with intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF), due to age-related macular degeneration or diabetic macular edema. Associated publications of the data sets: Fu et al. (2020) <doi:10.1001/jamaophthalmol.2020.5044>, Moraes et al (2020) <doi:10.1016/j.ophtha.2020.09.025>, Fasler et al. (2019) <doi:10.1136/bmjopen-2018-027441>, Arpa et al. (2020) <doi:10.1136/bjophthalmol-2020-317161>, Kern et al. 2020, <doi:10.1038/s41433-020-1048-0>.

eyedata

Travis buildstatus

Contains open access ophthalmic data sets, curated for the use in R.

Installation

Install the development version from https://github.com/tjebo/eyedata with:

# install.packages("devtools")
devtools::install_github("tjebo/eyedata")

Data sets

eyedata contains five anonymized real life data sets from patients treated in Moorfields Eye Hospital, London, UK. Kindly reference those data sets by citing the corresponding publications.

  • amd: (Fu et al. 2020) 12 year data of patients with treatment-naive neovascular age-related macular degeneration (AMD) who received intravitreal anti-VEGF therapy. original data
  • amd2: (Fasler et al. 2019) Eyes with treatment-naive neovascular age-related macular degeneration (AMD) who received intravitreal anti-VEGF therapy. original data
  • amd3: (Arpa et al. 2020) Eyes with treatment-naive neovascular age-related macular degeneration (AMD) who received intravitreal anti-VEGF therapy.
  • dme: (Kern et al. 2020) and (Fu and Keane 2020) Patients with diabetic macular edema (DME) who received intravitreal anti-VEGF therapy. original data
  • amdoct: (Moraes et al. 2020) OCT segmentation data of patients undergoing treatment for neovascular AMD. original data

Arpa, Cristina, Hagar Khalid, Shruti Chandra, Siegfried Wagner, Katrin Fasler, Livia Faes, Pakinee Pooprasert, et al. 2020. “Ten-Year Survival Trends of Neovascular Age-Related Macular Degeneration at First Presentation.” British Journal of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2020-317161.

Fasler, Katrin, Gabriella Moraes, Siegfried Wagner, Karsten U Kortuem, Reena Chopra, Livia Faes, Gabriella Preston, et al. 2019. “One- and Two-Year Visual Outcomes from the Moorfields Age-Related Macular Degeneration Database: A Retrospective Cohort Study and an Open Science Resource.” BMJ Open 9 (6). https://doi.org/10.1136/bmjopen-2018-027441.

Fu, Dun Jack, and Pearse Keane. 2020. Anti-Vegf Therapy in Diabetic Macular Oedema Patients over Four Years. Dryad. https://doi.org/10.5061/dryad.pzgmsbcfw.

Fu, Dun Jack, Tiarnan D. Keenan, Livia Faes, Ernest Lim, Siegfried K. Wagner, Gabriella Moraes, Josef Huemer, et al. 2020. “Insights From Survival Analyses During 12 Years of Anti–Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration.” JAMA Ophthalmology, November. https://doi.org/10.1001/jamaophthalmol.2020.5044.

Kern, Christoph, Dun Jack Fu, Josef Huemer, Livia Faes, Siegfried K. Wagner, Karsten Kortuem, Praveen J. Patel, et al. 2020. “An Open-Source Data Set of Anti-VEGF Therapy in Diabetic Macular Oedema Patients over 4 Years and Their Visual Acuity Outcomes.” Eye, June. https://doi.org/10.1038/s41433-020-1048-0.

Moraes, Gabriella, Dun Jack Fu, Marc Wilson, Hagar Khalid, Siegfried K. Wagner, Edward Korot, Daniel Ferraz, et al. 2020. “Quantitative Analysis of Optical Coherence Tomography for Neovascular Age-Related Macular Degeneration Using Deep Learning.” Ophthalmology. https://doi.org/https://doi.org/10.1016/j.ophtha.2020.09.025.

Metadata

Version

0.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows