Floating Catchment Area (FCA) Methods to Calculate Spatial Accessibility.
Floating Catchment Area (FCA) Methods
Floating Catchment Area (FCA) methods to Calculate Spatial Accessibility.
Perform various floating catchment area methods to calculate a spatial accessibility index (SPAI) for demand point data. The distance matrix used for weighting is normalized in a preprocessing step using common functions (gaussian, gravity, exponential or logistic).
Installation
You can install the released version of fca from CRAN with:
install.packages("fca")
And the development version from GitHub with:
remotes::install_github("egrueebler/fca")
Example
This is a basic example which shows you how to calculate a SPAI for demand point data using FCA methods.
Create an example population, supply and distances:
set.seed(123)
# Population df with column for size
pop <- data.frame(
orig_id = letters[1:10],
size = c(100, 200, 50, 100, 500, 50, 100, 100, 50, 500)
)
# Supply df with column for capacity
sup <- data.frame(
dest_id = as.character(1:3),
capacity = c(1000, 200, 500)
)
# Distance matrix with travel times from 0 to 30
D <- matrix(
runif(30, min = 0, max = 30),
ncol = 10, nrow = 3, byrow = TRUE,
dimnames = list(c(1:3), c(letters[1:10]))
)
D
#> a b c d e f g h
#> 1 8.627326 23.64915 12.26931 26.49052 28.21402 1.366695 15.843165 26.772571
#> 2 28.705000 13.60002 20.32712 17.17900 3.08774 26.994749 7.382632 1.261786
#> 3 26.686179 20.78410 19.21520 29.82809 19.67117 21.255914 16.321981 17.824261
#> i j
#> 1 16.543050 13.698442
#> 2 9.837622 28.635109
#> 3 8.674792 4.413409
Normalize distance matrix with gaussian function, apply a threshold of 20 minutes (to compute beta for the function) and formatting input data as named vectors for the FCA method (match IDs of distance weight matrix with demand and supply data).
library(fca)
# Normalize distances
W <- dist_normalize(
D,
d_max = 20,
imp_function = "gaussian", function_d_max = 0.01
)
# Ensure order of ids
pop <- pop[order(pop$orig_id), ]
sup <- sup[order(sup$dest_id), ]
# Named vectors
(p <- setNames(pop$size, as.character(pop$orig_id)))
#> a b c d e f g h i j
#> 100 200 50 100 500 50 100 100 50 500
(s <- setNames(sup$capacity, as.character(sup$dest_id)))
#> 1 2 3
#> 1000 200 500
Apply FCA method on formatted input, get SPAI for each origin location (p
):
(spai <- spai_3sfca(p, s, W))
#> step3
#> a 3.97260949
#> b 0.03678999
#> c 1.46747735
#> d 0.01079342
#> e 0.28782748
#> f 9.11410451
#> g 0.19596873
#> h 0.31194607
#> i 0.37539987
#> j 1.10349481
References
- Grüebler E. (2021). Geospatial Analysis of Access to Healthcare: Child Development Needs and Available Care in the Canton of Zurich.
- Bauer, J., & Groneberg, D. A. (2016). Measuring Spatial Accessibility of Health Care Providers – Introduction of a Variable Distance Decay Function within the Floating Catchment Area (FCA) Method.
- Joerg, R., Lenz, N., Wetz, S., & Widmer, M. (2019). Ein Modell zur Analyse der Versorgungsdichte. Herleitung eines Index zur räumlichen Zugänglichkeit mithilfe von GIS und Fallstudie zur ambulanten Grundversorgung in der Schweiz.