MyNixOS website logo
Description

Fixed Effects Counterfactuals.

Estimates causal effects with panel data using the counterfactual methods. It is suitable for panel or time-series cross-sectional analysis with binary treatments under (hypothetically) baseline randomization.It allows a treatment to switch on and off and limited carryover effects. It supports linear factor models, a generalization of gsynth and the matrix completion method. Implementation details can be found in Liu, Wang and Xu (2022) <arXiv:2107.00856>.

fect

Lifecycle:experimental License:MIT

R package for implementing counterfactual estimators in panel fixed-effect settings. It is suitable for panel/TSCS analysis with binary treatments under (hypothetically) baseline randomization. It allows a treatment to switch on and off and limited carryover effects. It supports linear factor models—hence, a generalization of gsynth—and the matrix completion method.

Repo:GitHub (0.4.1)

Examples: R code used in the tutorial can be downloaded from here.

Reference: Licheng Liu, Ye Wang, Yiqing Xu (2021). A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data. American Journal of Political Science, conditionally accepted.

Installation

You can install the development version of fect from GitHub by typing the following commands:

devtools::install_github('xuyiqing/fect')

panelview for panel data visualization is also highly recommended:

devtools::install_github('xuyiqing/panelView')

fect depends on the following packages, which will be installed automatically when fect is being installed. You can also install them manually.

## for processing C++ code
require(Rcpp) 
## for plotting
require(ggplot2)  
require(GGally) 
require(grid)
require(gridExtra)
## for parallel computing 
require(foreach)
require(future)  
require(doParallel) 
require(abind) 

Report bugs

Please report bugs to yiqingxu [at] stanford.edu with your sample code and data file. Much appreciated!

Metadata

Version

1.0.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows