MyNixOS website logo
Description

File Cacher.

The main functions in this package are with_cache() and cached_read(). The former is a simple way to cache an R object into a file on disk, using 'cachem'. The latter is a wrapper around any standard read function, but caches both the output and the file list info. If the input file list info hasn't changed, the cache is used; otherwise, the original files are re-read. This can save time if the original operation requires reading from many files, and/or involves lots of processing.

filecacher

The main functions in this package are:

  1. with_cache(): Caches the expression in a local file on disk, using cachem::cache_disk() as its backend. This can be comfortably added to a piped sequence and it handles evaluating if the element doesn’t already exist, or pulling from the cache if it does.

  2. cached_read(): A wrapper around a typical read function that caches the result and the file list info using cachem::cache_disk(). If the input file list info hasn’t changed (including date modified), the cache file will be read. This can save time if the original operation requires reading from many files, or involves lots of processing.

See examples below.

Installation

You can install the released version of filecacher from CRAN with:

install.packages("filecacher")

And the development version from GitHub:

if(!requireNamespace("remotes")) install.packages("remotes")

remotes::install_github("orgadish/filecacher")

Example

# Example files: iris table split by species into three files.
iris_files_by_species <- list.files(
  system.file("extdata", package = "filecacher"),
  pattern = "_only[.]csv$",
  full.names = TRUE
)
basename(iris_files_by_species)
#> [1] "iris_setosa_only.csv"     "iris_versicolor_only.csv"
#> [3] "iris_virginica_only.csv"


# Create a temporary directory to run these examples.
tf <- withr::local_tempfile()
dir.create(tf)


something_that_takes_a_while <- function(x) {
  Sys.sleep(0.5)
  return(x)
}

# Example standard pipeline without caching:
#   1. Read using a vectorized `read.csv`.
#   2. Perform some custom processing that takes a while (currently using sleep as an example).
normal_pipeline <- function(files, cache_dir = NULL) {
  files |>
    filecacher::vectorize_reader(read.csv)() |>
    suppressMessages() |>
    something_that_takes_a_while()
}

# Same pipeline, using `cached_read` which caches the contents and the file info for checking later:
pipeline_using_cached_read <- function(files, cache_dir) {
  files |>
    filecacher::cached_read(
      label = "processed_data_using_cached_read",
      read_fn = normal_pipeline,
      cache = cache_dir,
      type = "parquet"
    )
}

# Alternate syntax, with `with_cache`. Using `with_cache` only checks that the cache file
# exists, without any information about the file list.
pipeline_using_with_cache <- function(files, cache_dir) {
  normal_pipeline(files) |>
    filecacher::with_cache(
      label = "processed_data_using_with_cache",
      cache = cache_dir,
      type = "parquet"
    )
}

# Time each pipeline when repeated 3 times:
time_pipeline <- function(pipeline_fn) {
  function_name <- as.character(match.call()[2])
  print(function_name)

  # Create a separate directory for the cache for this function.
  cache_dir <- tempfile(function_name, tmpdir = tf)
  dir.create(cache_dir)

  gc()

  for (i in 1:3) {
    print(system.time(pipeline_fn(iris_files_by_species, cache_dir)))
  }
}

time_pipeline(normal_pipeline)
#> [1] "normal_pipeline"
#>    user  system elapsed 
#>    0.06    0.03    0.60 
#>    user  system elapsed 
#>    0.00    0.02    0.52 
#>    user  system elapsed 
#>     0.0     0.0     0.5
time_pipeline(pipeline_using_cached_read)
#> [1] "pipeline_using_cached_read"
#>    user  system elapsed 
#>    0.59    0.18    1.30 
#>    user  system elapsed 
#>    0.03    0.00    0.03 
#>    user  system elapsed 
#>    0.00    0.02    0.01
time_pipeline(pipeline_using_with_cache)
#> [1] "pipeline_using_with_cache"
#>    user  system elapsed 
#>    0.01    0.02    0.53 
#>    user  system elapsed 
#>    0.01    0.01    0.03 
#>    user  system elapsed 
#>    0.00    0.02    0.02
Metadata

Version

0.2.9

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows