MyNixOS website logo
Description

Estimate Genome Size of Polyploid Species Using k-Mer Frequencies.

Provides tools to estimate the genome size of polyploid species using k-mer frequencies. This package includes functions to process k-mer frequency data and perform genome size estimation by fitting k-mer frequencies with a normal distribution model. It supports handling of complex polyploid genomes and offers various options for customizing the estimation process. The basic method 'findGSE' is detailed in Sun, Hequan, et al. (2018) <doi:10.1093/bioinformatics/btx637>.

findGSEP

R-CMD-check

Accurate estimating genome size is a crucial task in sequencing projects. Current methods often struggle with polyploidy or become inefficient when dealing with species that exceed a ploidy level of six. To address these challenges, we introduce findGSEP, an enhanced version of findGSE. findGSEP utilizes a segmented fitting approach to fit a normal distribution to polyploid species within a segmented framework. This ap-proach simplifies the process of single fitting while significantly expanding the range of ploidy levels it can handle. Moreover, findGSEP offers users interactive tools through both an open-source R application and a web application, facilitating reliable and precise estimation of genome size.

News 🌟

We have released our backend-server findGSEP and provide a CPU-based version of findGSEP online platform. Please check it out!!!

Installation & Usage

Instructions for running Jellyfish:

  1. Download and install jellyfish from: Jellyfish Release

  2. Count kmers using jellyfish:

    jellyfish count -C -m 21 -t 1 -s 5G *.fastq -o reads.mer
    

    Note: Adjust the memory (-s) and threads (-t) parameters according to your server. This example uses 1 thread and 5GB of RAM. The kmer length (-m) may need to be scaled if you have low coverage or a high error rate. Always use 'canonical kmers' (-C).

  3. Export the kmer count histogram:

    jellyfish histo -h 3000000 -t 10 -o reads.histo reads.mer
    

    Note: The thread count (-t) should be scaled according to your server.

  4. Upload reads.histo to findGSEP.

Using KMC:

  1. Download and install KMC from: KMC GitHub

  2. Count kmers using KMC:

    kmc -k21 -t1 -m5 -ci1 *.fastq reads_kmc tmp
    

    Note: Adjust the memory (-m) and threads (-t) parameters according to your server. This example uses 1 thread and 5GB of RAM. The kmer length (-k) may need to be scaled if you have low coverage or a high error rate. The -ci1 option ensures that kmers with a count of at least 1 are included.

  3. Export the kmer count histogram:

    kmc_tools transform reads_kmc histogram reads_kmc.histo
    

    Note: This will create the histogram file reads_kmc.histo.

  4. Upload reads_kmc.histo to findGSEP.

Instructions for installing findGSEP package

  1. Install devtools:
install.packages("devtools")
  1. Install directly from GitHub:
devtools::install_github("sperfu/findGSEP")

Note: This package was developed using R version 4.2.0. To ensure the stability of the package, it is highly recommended that users install R version 4.2.0.

Data

You can check our demo dataset at our webserver or drive for complete data. We have provide precalculated histo file whose ploidy number ranging from tetraploid to octoploid.

Usage:

# Set options (optional):

options(warn = -1)

# Define input parameters:

path <- "histo_files"
samples <- "your_file.histo"
sizek <- 21
exp_hom <- 200
ploidy <- 4
output_dir <- "outfiles"
xlimit <- -1
ylimit <- -1
range_left <- exp_hom * 0.2
range_right <- exp_hom * 0.2

#Call the findGSEP function with specified parameters:

findGSEP(path, samples, sizek, exp_hom, ploidy, range_left, range_right, xlimit, ylimit, output_dir)

# For any questions, usage inquiries, or reporting potential bugs, please contact the author.

After running, You will find 'your_file.histo_hap_genome_size_est.pdf' in your output_dir folder, please give it a try!!!

Parameter settings

You can reference to our paramenter setting for those species we used in our webserver or demo dataset.

SpeciesExpected Hom(Mb)Ploidy numberSize k
Chinese sturgeon100821
Strawberry100821
Wheat150621
Redwood80621
Cotton150421
Javanica200421
Potato180421
Floridensis220421
Crayfish35321
Enterolobii130321
Incognita200321
Seabass80221
Bird40221
Drosophila50221
Pear100221
Oyster50221

Note:

If you enconter problem when installing devtools, especially for those packages below, please consider install them using conda install command:

conda install -c conda-forge r-gert
conda install -c conda-forge r-textshaping
conda install -c conda-forge r-ragg
conda install -c conda-forge r-pkgdown

If you enconter issues like:

  1. could not find function "brewer.pal"

  2. could not find function "alpha"

Solutions:

library(RColorBrewer)
library(ggplot2)
Metadata

Version

1.2.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows