MyNixOS website logo
Description

Implementing Computational Models of Attentional Selectivity.

A set of methods to simulate from and fit computational models of attentional selectivity. The package implements the dual-stage two-phase (DSTP) model of Hübner et al. (2010) <doi:10.1037/a0019471>, and the shrinking spotlight (SSP) model of White et al. (2011) <doi:10.1016/j.cogpsych.2011.08.001>.

flankr v1.2.0

$\texttt{flankr}$ is an R package implementing computational models of Eriksen flanker task performance. The package allows simulation of the models as well as fitting the models to participant data. Additional utility functions allow plotting of the best-fitting model parameters against observed data, as well as providing Bayesian Information Criterion values for model competition.

Current models implemented in $\texttt{flankr}$ are:

  • The Shrinking Spotlight Model (SSP) of White et al. (2011)
  • The Dual-Stage Two-Phase Model (DSTP) of Hübner et al. (2010)

Installation

The development version can be installed from GitHub with:

require(devtools)
devtools::install_github("JimGrange/flankr")

User guide

Full details of how to use the package is available in the following paper:

Grange, J.A. (2016). flankr: An R package for implementing computational models of attentional selectivity. Behavior Research Methods, 48, 528–541.

Updates for version 1.2.0

  • 50% further efficiency in DSTP simulation speed from version 1.1.0. (Users who have only ever installed the initial release 1.0.0 will notice significantly larger improvements.)
  • 24% further efficiency in SSP simulation speed. (Users who have only ever installed the initial release 1.0.0 will notice significantly larger improvements.)
  • Please note that the way random seeds are now handled in both $\texttt{simulateDSTP}$ and $\texttt{simulateSSP}$ is slightly different to that in version 1.0.0 (initial release) and version 1.1.0. Therefore, there may be very slight differences between simulation data (and therefore potentially very slight differences in best-fitting parameter values) between versions.

References

  • Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759–784. https://doi.org/10.1037/a0019471
  • White, C. N., Ratcliff, R., & Starns, J. S. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210–238. https://doi.org/10.1016/j.cogpsych.2011.08.001
Metadata

Version

1.2.0

License

Unknown

Platforms (76)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-linux
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows