MyNixOS website logo
Description

Factor-Adjusted Network Estimation and Forecasting for High-Dimensional Time Series.

Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model. See Barigozzi, Cho and Owens (2024+) <doi:10.1080/07350015.2023.2257270> for further descriptions of FNETS methodology and Owens, Cho and Barigozzi (2024+) <arXiv:2301.11675> accompanying the R package.

fnets

Contains methods for network estimation and forecasting for high-dimensional time series under a factor-adjusted VAR model. See

fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

by Dom Owens, Haeran Cho and Matteo Barigozzi arXiv:2301.11675 accompanying the R package, and

FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series

by Matteo Barigozzi, Haeran Cho and Dom Owens arXiv:2201.06110 for details of the methodology.

Installation

To install fnets from CRAN:

install.packages("fnets")

To install from GitHub:

devtools::install_github("https://github.com/Dom-Owens-UoB/fnets")

Usage

We can generate an example dataset used in the above paper for simulation studies, by separately generating the factor-driven common component and the idiosyncratic VAR process as

set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$data + idio$data

Fit a factor-adjusted VAR model with q = 2 factors and lasso for VAR transition matrix estimation

out <- fnets(x, q = 2, var.order = 1, var.method = "lasso", do.lrpc = FALSE)

Plot the Granger network induced by the estimated VAR transition matrices:

plot(out, type = "granger", display = "network")

Estimate and plot the partial-correlation and long-run partial correlation-based networks:

plrpc <- par.lrpc(out)
out$lrpc <- plrpc
out$lrpc.method <- 'par'
plot(out, type = "lrpc", display = "heatmap")

Estimate the (long-run) partial correlation-based networks directly using fnets:

out <- fnets(x, q = 2, var.order = 1, var.method = "lasso", do.lrpc = TRUE)

Forecast n.ahead steps:

pr <- predict(out, n.ahead = 1, common.method = "restricted")
pr$forecast
Metadata

Version

0.1.6

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows