MyNixOS website logo
Description

Functions for Calculating Fit-Robustness of CNA-Solutions.

Functions for automatically performing a reanalysis series on a data set using CNA, and for calculating the fit-robustness of the resulting models, as described in Parkkinen and Baumgartner (2021) <doi:10.1177/0049124120986200>.

frscore

R-CMD-check

Overview

Functions for automatically performing a reanalysis series on a data set using cna::cna(), and for calculating the fit-robustness of the resulting models, as described in Parkkinen and Baumgartner (2021): https://journals.sagepub.com/doi/full/10.1177/0049124120986200.

In the most common use case, one wants to obtain a set of models and their respective fit-robustness scores given a range of consistency and coverage values that determine a reanalysis series of the data set of interest. The function frscored_cna() runs the reanalysis series on a data set and calculates the fit-robustness scores of the recovered models in one go. If one only wishes to repeatedly analyze a data set with different consistency and coverage thresholds in a given range, rean_cna() automates this. If one wishes to calculate the fit-robustness scores for an existing set of models, or simply count (causal) sub- and supermodel relations in a set of models for any reason, frscore() does this. causal_submodel() is a generalization of cna::is.submodel() that checks whether all causal relevance ascriptions, rather than only ascriptions of direct causation, made by one model are contained in another model. causal_submodel() is used by default in frscored_cna() and frscore() to calculate fr-scores, but the user can change this to cna::is.submodel() to obtain a moderate speed improvement if needed.

Have a look at the NEWS for information about recent changes and developments.

Installation

# latest version on CRAN

install.packages("frscore")

Usage

library(frscore)

frsc <- frscored_cna(selectCases("A+B+F*g<->R"))
frsc

rean_cna(ct2df(selectCases("A+B+F*g<->R")), attempt = seq(1, 0.7, -0.1))

res <- rean_cna(selectCases("A+B+F*g<->R"), attempt = seq(1, 0.7, -0.1))
res <- do.call(rbind, res)
fr <- frscore(res[,2])
fr

target <- "(A+B<->C)*(C+D<->E)"
candidate <- "A+B<->E"
causal_submodel(candidate, target)



Metadata

Version

0.4.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows