MyNixOS website logo
Description

A Faster Unique Function.

Similar to base's unique function, only optimized for working with data frames, especially those that contain date-time columns.

funique

Travis buildstatus lifecycle

⌚️ A faster unique() function

Installation

You can install the released version of funique from Github with:

## install remotes pkg if not already
if (!requireNamespace("remotes", quietly = TRUE)) {
  install.packages("remotes")
}

## install funique from github
remotes::install_github("mkearney/funique")

Usage

There’s one function funique(), which is the same as base::unique() only optimized to be faster when data contain date-time variables.

Speed test: funique() vs. base::unique()

The code below creates a data frame with several duplicate rows and then compares performance (in time) of funique() versus base::unique().

## set seed
set.seed(20180812)

## generate data
d <- data.frame(
  x = rnorm(1000),
  y = seq.POSIXt(as.POSIXct("2018-01-01"),
    as.POSIXct("2018-12-31"), length.out = 10))

## create data frame with duplicate rows
d <- d[c(1:1000, sample(1:1000, 500, replace = TRUE)), ]
row.names(d) <- NULL

## check the output against base::unique
identical(unique(d), funique(d))
#> [1] TRUE

## bench mark
(m <- microbenchmark::microbenchmark(unique(d), funique(d), 
  times = 200, unit = "relative"))
#> Unit: relative
#>        expr     min      lq    mean  median      uq     max neval
#>   unique(d) 4.98663 4.92073 4.94704 5.14552 5.38573 2.02836   200
#>  funique(d) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000   200

## plot
plot(drop_hl(m, n = 4)) + 
  ggplot2::ggsave("man/figures/r1.png", width = 8, height = 4.5, units = "in")

Here’s another test this time using duplicate-infested Twitter data.

## search for data on 100 tweets
rt <- rtweet::search_tweets("lang:en", verbose = FALSE)

## create duplicates
rt2 <- rt[sample(1:nrow(rt), 1000, replace = TRUE), ]

## benchmarks
(mb <- microbenchmark::microbenchmark(
  unique(rt2), funique(rt2), unit = "relative"))
#> Unit: relative
#>          expr     min      lq    mean median      uq      max neval
#>   unique(rt2) 1.56861 1.57622 1.35692 1.5524 1.35336 0.393617   100
#>  funique(rt2) 1.00000 1.00000 1.00000 1.0000 1.00000 1.000000   100

## make sure the output is the same
identical(unique(rt2), funique(rt2))
#> [1] TRUE

## plot
plot(drop_hl(m, n = 4)) + 
  ggplot2::ggsave("man/figures/r2.png", width = 8, height = 4.5, units = "in")

Metadata

Version

0.0.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows