Description
Fused Lasso for High-Dimensional Regression over Groups.
Description
Enables high-dimensional penalized regression across heterogeneous subgroups. Fusion penalties are used to share information about the linear parameters across subgroups. The underlying model is described in detail in Dondelinger and Mukherjee (2017) <arXiv:1611.00953>.
README.md
fuser
Fused lasso for high-dimensional regression over groups. This package implements the model described in Dondelinger et al. (2016).
Installation
library('devtools')
install_github('FrankD/fuser')
Example
See also the included vignette.
library(fuser)
set.seed(123)
# Generate simple heterogeneous dataset
k = 4 # number of groups
p = 100 # number of covariates
n.group = 15 # number of samples per group
sigma = 0.05 # observation noise sd
groups = rep(1:k, each=n.group) # group indicators
# sparse linear coefficients
beta = matrix(0, p, k)
nonzero.ind = rbinom(p*k, 1, 0.025/k) # Independent coefficients
nonzero.shared = rbinom(p, 1, 0.025) # shared coefficients
beta[which(nonzero.ind==1)] = rnorm(sum(nonzero.ind), 1, 0.25)
beta[which(nonzero.shared==1),] = rnorm(sum(nonzero.shared), -1, 0.25)
X = lapply(1:k, function(k.i) matrix(rnorm(n.group*p),n.group, p)) # covariates
y = sapply(1:k, function(k.i) X[[k.i]] %*% beta[,k.i] + rnorm(n.group, 0, sigma)) # response
X = do.call('rbind', X)
# Pairwise Fusion strength hyperparameters (tau(k,k'))
# Same for all pairs in this example
G = matrix(1, k, k)
# Use L1 fusion to estimate betas (with near-optimal sparsity and
# information sharing among groups)
beta.estimate = fusedLassoProximal(X, y, groups, lambda=0.001, tol=9e-5,
gamma=0.001, G, intercept=FALSE,
num.it=2000)
# Generate block diagonal matrices for L2 fusion approach
transformed.data = generateBlockDiagonalMatrices(X, y, groups, G)
# Use L2 fusion to estimate betas (with near-optimal information sharing among groups)
beta.estimate = fusedL2DescentGLMNet(transformed.data$X, transformed.data$X.fused,
transformed.data$Y, groups, lambda=c(0,0.001,0.1,1),
gamma=0.001)