Description
Generalized Weighted Quantile Sum Regression.
Description
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
README.md