MyNixOS website logo
Description

A Comprehensive Analysis of High Dimensional Longitudinal Data.

To provide a comprehensive analysis of high dimensional longitudinal data,this package provides analysis for any combination of 1) simultaneous variable selection and estimation, 2) mean regression or quantile regression for heterogeneous data, 3) cross-sectional or longitudinal data, 4) balanced or imbalanced data, 5) moderate, high or even ultra-high dimensional data, via computationally efficient implementations of penalized generalized estimating equations.

geeVerse

geeVerse is an R package to provide computationally efficient implementations of penalized generalized estimating equations for any combination of 1) simultaneous variable selection and estimation for high and even ultra-high dimensional data, 2) conditional quantile or mean regression, and 3) longitudinal or cross-sectional data analysis.

Installation

You can install the latest version of geeVerse from GitHub with:

# install.packages("devtools")
devtools::install_github("zzz1990771/geeVerse")

Usage and Example:

After installation, you can load the package as usual:

library(geeVerse)

To get detailed documentation on the qpgee function, use:

?qpgee

This will show you the function's usage, arguments, and examples.

Running an Example:

#settings
sim_data <- generateData(nsub = 20, nobs = rep(10, 20),  p = 20,
                         beta0 = c(rep(1,5),rep(0,15)), rho = 0.1, correlation = "AR1",
                          dis = "normal", ka = 1)

X=sim_data$X
y=sim_data$y

#fit qpgee with auto selected lambda
qpgee.fit = qpgee(X,y,tau=0.5,nobs=rep(10, 20),ncore=1)
qpgee.fit$beta
Metadata

Version

0.2.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows