MyNixOS website logo
Description

Power Calculations Under Genetic Model Misspecification.

Power and sample size calculations for genetic association studies allowing for misspecification of the model of genetic susceptibility. "Hum Hered. 2019;84(6):256-271.<doi:10.1159/000508558>. Epub 2020 Jul 28." Power and/or sample size can be calculated for logistic (case/control study design) and linear (continuous phenotype) regression models, using additive, dominant, recessive or degree of freedom coding of the genetic covariate while assuming a true dominant, recessive or additive genetic effect. In addition, power and sample size calculations can be performed for gene by environment interactions. These methods are extensions of Gauderman (2002) <doi:10.1093/aje/155.5.478> and Gauderman (2002) <doi:10.1002/sim.973> and are described in: Moore CM, Jacobson S, Fingerlin TE. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. American Society of Human Genetics. October 2018, San Diego.

genpwr

The genpwr package for R (>3.5.1) performs power and sample size calculations for genetic association studies and allows for mis-specification of the genetic model. Calculations can be performed for binary (case/control) and continuous outcomes. Power and sample size calculations are possible for genetic effects as well as gene by environment interactions.

Example

To calculate power to detect an odds ratio of 2 for a 1:1 case control study with 2,000 subjects, assuming an alpha of 0.05, at minor allele frequencies of 0.1, 0.2, and 0.3:

library(genpwr)
#> Loading required package: ggplot2
#> Loading required package: nleqslv
#> Loading required package: MASS

genpwr.calc(calc = "power", model = "logistic", N = 2000, OR = 2,
            Alpha = 0.05, MAF = c(0.1,0.2,0.3), Case.Rate = 0.5)
#>     Test.Model True.Model MAF OR N_total N_cases N_controls Case.Rate
#> 1     Dominant   Dominant 0.1  2    2000    1000       1000       0.5
#> 3     Dominant   Additive 0.1  2    2000    1000       1000       0.5
#> 5     Dominant  Recessive 0.1  2    2000    1000       1000       0.5
#> 7     Dominant   Dominant 0.2  2    2000    1000       1000       0.5
#> 9     Dominant   Additive 0.2  2    2000    1000       1000       0.5
#> 11    Dominant  Recessive 0.2  2    2000    1000       1000       0.5
#> 13    Dominant   Dominant 0.3  2    2000    1000       1000       0.5
#> 15    Dominant   Additive 0.3  2    2000    1000       1000       0.5
#> 17    Dominant  Recessive 0.3  2    2000    1000       1000       0.5
#> 12   Recessive   Dominant 0.1  2    2000    1000       1000       0.5
#> 31   Recessive   Additive 0.1  2    2000    1000       1000       0.5
#> 51   Recessive  Recessive 0.1  2    2000    1000       1000       0.5
#> 71   Recessive   Dominant 0.2  2    2000    1000       1000       0.5
#> 91   Recessive   Additive 0.2  2    2000    1000       1000       0.5
#> 111  Recessive  Recessive 0.2  2    2000    1000       1000       0.5
#> 131  Recessive   Dominant 0.3  2    2000    1000       1000       0.5
#> 151  Recessive   Additive 0.3  2    2000    1000       1000       0.5
#> 171  Recessive  Recessive 0.3  2    2000    1000       1000       0.5
#> 14    Additive   Dominant 0.1  2    2000    1000       1000       0.5
#> 32    Additive   Additive 0.1  2    2000    1000       1000       0.5
#> 52    Additive  Recessive 0.1  2    2000    1000       1000       0.5
#> 72    Additive   Dominant 0.2  2    2000    1000       1000       0.5
#> 92    Additive   Additive 0.2  2    2000    1000       1000       0.5
#> 112   Additive  Recessive 0.2  2    2000    1000       1000       0.5
#> 132   Additive   Dominant 0.3  2    2000    1000       1000       0.5
#> 152   Additive   Additive 0.3  2    2000    1000       1000       0.5
#> 172   Additive  Recessive 0.3  2    2000    1000       1000       0.5
#> 16         2df   Dominant 0.1  2    2000    1000       1000       0.5
#> 33         2df   Additive 0.1  2    2000    1000       1000       0.5
#> 53         2df  Recessive 0.1  2    2000    1000       1000       0.5
#> 73         2df   Dominant 0.2  2    2000    1000       1000       0.5
#> 93         2df   Additive 0.2  2    2000    1000       1000       0.5
#> 113        2df  Recessive 0.2  2    2000    1000       1000       0.5
#> 133        2df   Dominant 0.3  2    2000    1000       1000       0.5
#> 153        2df   Additive 0.3  2    2000    1000       1000       0.5
#> 173        2df  Recessive 0.3  2    2000    1000       1000       0.5
#>     Power_at_Alpha_0.05
#> 1            0.99997130
#> 3            0.99999117
#> 5            0.06094645
#> 7            0.99999997
#> 9            1.00000000
#> 11           0.12562959
#> 13           0.99999999
#> 15           1.00000000
#> 17           0.26400143
#> 12           0.23736708
#> 31           0.72802319
#> 51           0.32261174
#> 71           0.51913618
#> 91           0.99712300
#> 111          0.84110046
#> 131          0.65907220
#> 151          0.99999669
#> 171          0.99128361
#> 14           0.99994745
#> 32           0.99999535
#> 52           0.09704782
#> 72           0.99999973
#> 92           1.00000000
#> 112          0.39542984
#> 132          0.99999976
#> 152          1.00000000
#> 172          0.83339405
#> 16           0.99987562
#> 33           0.99997633
#> 53           0.24913314
#> 73           0.99999976
#> 93           1.00000000
#> 113          0.75849311
#> 133          0.99999996
#> 153          1.00000000
#> 173          0.97950882

"The return object contains information about power for additive, dominant, recessive, and 2df / genotypic tests of association, assuming various true underlying genetic effects (additive, dominant, recessive). "

Installation instructions

To install genpwr, perform the following steps:

  • Install R version 3.5.1 or higher by following the instructions at https://www.R-project.org
  • From the R environment, install and load the "genpwr" package:
install.packages("genpwr")
  • Load the library
library(genpwr)

Demo

Install the genpwr package as described above.

Run the genpwr demo program

demo(genpwr_demo)
Metadata

Version

1.0.4

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows