MyNixOS website logo
Description

Geoadditive Small Area Model.

This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model. This package refers to J.N.K Rao and Isabel Molina (2015, ISBN: 978-1-118-73578-7), Bocci, C., & Petrucci, A. (2016)<doi:10.1002/9781118814963.ch13>, and Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018)<doi:10.21082/jpptp.v2n2.2018.p101-110>.

geoSAE

This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model.

Authors

Ketut Karang Pradnyadika, Ika Yuni Wulansari

Maintainer

Ketut Karang Pradnyadika [email protected]

Installation

You can install the released version of geoSAE from CRAN or find my github repository Github

Example

#Load the dataset for unit level
library(geoSAE)
data(dataUnit)
#Load the dataset for spline-2
data(zspline)
#Load the dataset for area level
data(dataArea)
#Construct the data frame
y       <- dataUnit$y
x1      <- dataUnit$x1
x2      <- dataUnit$x2
x3      <- dataUnit$x3
formula <- y~x1+x2+x3
zspline <- as.matrix(zspline[,1:6])
dom     <- dataUnit$area
xmean   <- cbind(1,dataArea[,3:5])
zmean   <- dataArea[,7:12]
number  <- dataUnit$number
area    <- dataUnit$area
data    <- data.frame(number, area, y, x1, x2, x3)
#Estimate EBLUP
eblup_geosae <- eblupgeo(formula, zspline, dom, xmean, zmean, data)
eblup_geosae$eblup
#>           [,1]
#>  [1,] 29.04625
#>  [2,] 33.43651
#>  [3,] 34.66706
#>  [4,] 33.81857
#>  [5,] 23.52744
#>  [6,] 22.89752
#>  [7,] 21.86852
#>  [8,] 21.26004
#>  [9,] 33.73404
#> [10,] 38.43505
#> [11,] 33.77393
#> [12,] 28.98660
#> [13,] 32.29918
#> [14,] 24.31817
#> [15,] 31.23797
 
#Estimate MSE
mse_geosae <- pbmsegeo(formula,zspline,dom,xmean,zmean,data,B=100)
#> 
#> Bootstrap procedure with B = 100 iterations starts.
mse_geosae$mse
#>  [1]  2.052566  1.978709  2.231913 10.926587  1.480916  4.157471  3.172412
#>  [8]  1.839984  2.466619  1.563998  3.051762 16.937056 16.238457  2.648152
#> [15]  5.538344
 
## eblup_geosae$eblup        #to see the result of EBLUPs with Geoadditive Small Area Model each area
## mse_geosae$mse            #to see the result of MSE with Geoadditive Small Area Model each area

References

  • Rao, J.N.K & Molina. (2015). Small Area Estimation 2nd Edition. New York: John Wiley and Sons, Inc.
  • Bocci, C., & Petrucci, A. (2016). Spatial information and geoadditive small area models. Analysis of poverty data by small area estimation, 245-259.
  • Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018). PENDUGAAN AREA KECIL DATA PRODUKTIVITAS TANAMAN PADI DENGAN GEOADDITIVE SMALL AREA MODEL. Jurnal Penelitian Pertanian Tanaman Pangan, 2(2), 101-110.
Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows