MyNixOS website logo
Description

Causal Inference with Spatio-Temporal Data.

Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.

geocausal

CRANstatus CRANdownloads CRAN totaldownloads

The goal of the package geocausal is to implement causal inference analytic methods based on spatio-temporal data. Users provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows.

Please refer to the following preprint for the user guide.

Mukaigawara M, Zhou L, Papadogeorgou G, Lyall J, and Imai K (2024). Geocausal: An R Package for Spatio-temporal Causal Inference. OSF Preprints. December 16. https://doi.org/10.31219/osf.io/5kc6f.

For methodological details, please refer to the following article.

Papadogeorgou G, Imai K, Lyall J, and Li F (2022). Causal inference with spatio-temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq. J R Stat Soc Series B.https://doi.org/10.1111/rssb.12548.

Citation

Please cite this package as follows:

Mukaigawara M, Zhou L, Papadogeorgou G, Lyall J, and Imai K (2024). Geocausal: An R Package for Spatio-temporal Causal Inference. OSF Preprints. December 16. https://doi.org/10.31219/osf.io/5kc6f.

Installation

You can install the package geocausal from GitHub with:

# install.packages("devtools")
devtools::install_github("mmukaigawara/geocausal")

and CRAN with:

install.packages("geocausal")
Metadata

Version

0.3.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows