MyNixOS website logo
Description

Get and Manipulate the GESLA Dataset.

Promote access to the GESLA <https://gesla787883612.wordpress.com> (Global Extreme Sea Level Analysis) dataset, a higher-frequency sea-level record data from all over the world. It provides functions to download it entirely, or query subsets directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites.

geslaR

Get And Manipulate the GESLA Dataset

ActionR-CMD-checktest-coveragepkgdowncodecov
StatusR-CMD-checktest-coveragepkgdownCodecov test coverage

The geslaR package was developed to deal with the GESLA (Global Extreme Sea Level Analysis) dataset.

The GESLA (Global Extreme Sea Level Analysis) project aims to provide a global database of higher-frequency sea-level records for researchers to study tides, storm surges, extreme sea levels, and related processes. Three versions of the GESLA dataset are available for download, including a zip file containing the entire dataset, a CSV file containing metadata, and a KML file for plotting the location of all station records in Google Earth. The geslaR R package developed here aims to facilitate the access to the GESLA dataset by providing functions to download it entirely, or query subsets of it directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites all over the world. Users can download the selected subset of data in CSV or Parquet file formats, with the latter being recommended due to its smaller size and the ability to handle it in many programming languages through the Apache Arrow language for in-memory analytics. The web interface was developed using the Shiny R package, with the CSV files from the GESLA dataset converted to the Parquet format and stored in an Amazon AWS bucket.

To get started with the package, please see the vignette Dealing with the GESLA dataset in R, where you will find a besic introduction to all the functions available and how to use each one of them. To learn how to use the Apache Arrow framework to deal with the dataset in R, see the vignette Introduction to Apache Arrow framework.

Installation

You can install the latest version of geslaR from GitHub with:

## install.packages("devtools")
devtools::install_github("EireExtremes/geslaR")

To be able to use the built-in web-application, all the package dependencies should also be installed with:

devtools::install_github("EireExtremes/geslaR", dependencies = TRUE)

Examples

library(geslaR)

To read files from the GESLA dataset, use the read_gesla() function.

##------------------------------------------------------------------
## Import an internal example Parquet file
tmp <- tempdir()
file.copy(system.file(
    "extdata", "ireland.parquet", package = "geslaR"), tmp)
da <- read_gesla(paste0(tmp, "/ireland.parquet"))
## Check size in memory
object.size(da)

##------------------------------------------------------------------
## Import an internal example CSV file
tmp <- tempdir()
file.copy(system.file(
    "extdata", "ireland.csv", package = "geslaR"), tmp)
da <- read_gesla(paste0(tmp, "/ireland.csv"))
## Check size in memory
object.size(da)

##------------------------------------------------------------------
## Import an internal example Parquet file as data.frame
tmp <- tempdir()
file.copy(system.file(
    "extdata", "ireland.parquet", package = "geslaR"), tmp)
da <- read_gesla(paste0(tmp, "/ireland.parquet"),
    as_data_frame = TRUE)
## Check size in memory
object.size(da)

##------------------------------------------------------------------
## Import an internal example CSV file as data.frame
tmp <- tempdir()
file.copy(system.file(
    "extdata", "ireland.csv", package = "geslaR"), tmp)
da <- read_gesla(paste0(tmp, "/ireland.csv"),
    as_data_frame = TRUE)
## Check size in memory
object.size(da)

To make a query to the GESLA dataset and load it directly into R, one can use the query_gesla() function.

## Query a subset of the GESLA dataset, without the need of downloading
## all the dataset
de <- query_gesla(country = "IRL", year = 2020:2021, as_data_frame = FALSE)
class(de)

To download the full dataset locally, use the download_gesla() function.

## Download the whole dataset (parquet files) into a specific location
download_gesla(dest = "./gesla_dataset")
## ℹ The total size of the dataset is about 7GB, and the download time will depend on
## your internet connection
## Do you want to download the whole dataset?

## 1: Yes
## 2: No

## Selection: 1
## ℹ Wait while the dataset is downloaded...

To open the built-in web-application, use the run_gesla_app() function (note that this will need the installation of geslaR with all of its dependencies).

## This function will download the whole dataset (if not yet done), and
## open the geslar-app web interface locally on your browser
run_gesla_app()

Acknowledgements

This work has emanated from research conducted with the financial support of Science Foundation Ireland and co-funded by GSI under Grant number 20/FFP-P/8610.

Metadata

Version

1.0-1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows