MyNixOS website logo
Description

Variable Selection in Linear Mixed Models for SNP Data.

Fit penalized multivariable linear mixed models with a single random effect to control for population structure in genetic association studies. The goal is to simultaneously fit many genetic variants at the same time, in order to select markers that are independently associated with the response. Can also handle prior annotation information, for example, rare variants, in the form of variable weights. For more information, see the website below and the accompanying paper: Bhatnagar et al., "Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models", 2020, <DOI:10.1371/journal.pgen.1008766>.

CRAN_Status_Badge AppVeyor build status Travis-CI Build Status Coverage status Downloads R-CMD-check


ggmix: Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models

Installation

# stable version from CRAN
install.packages("ggmix")

# development version from GitHub
if (!requireNamespace("pacman")) install.packages("pacman")
pacman::p_load_gh('sahirbhatnagar/ggmix')

Methodological Details

The companion paper is available at https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008766


Documentation

Please visit https://sahirbhatnagar.com/ggmix/ for details on how to use this package.


Please note that the 'ggmix' project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.


References

If you use ggmix in your work, I would highly appreciate if you cite the paper and the package:

  1. Bhatnagar SR, Yang Y, Lu T, Schurr E, Loredo-Osti JC, Forest M, Oualkacha K, Greenwood CMT (2020). Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models. PLoS Genet 16(5): e1008766. https://doi.org/10.1371/journal.pgen.1008766.

  2. Bhatnagar SR, Oualkacha K, Yang Y, Greenwood CMT (2020). ggmix: Variable Selection in Linear Mixed Models for SNP Data. R package version 0.0.2. https://github.com/sahirbhatnagar/ggmix.

Metadata

Version

0.0.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows