MyNixOS website logo
Description

Calculate Textures from Grey-Level Co-Occurrence Matrices (GLCMs).

Enables calculation of image textures (Haralick 1973) <doi:10.1109/TSMC.1973.4309314> from grey-level co-occurrence matrices (GLCMs). Supports processing images that cannot fit in memory.

glcm

Build Status

Overview

The glcm package enables calculating image textures derived from grey-level co-occurrence matrics (GLCMs) in R. The texture calculation is coded in C++ to optimize computation time. The glcm function in the package can compute the following texture statistics: mean (using either of two definitions), variance (using either of two definitions), homogeneity, contrast, dissimilarity, entropy, second_moment, and, correlation. The window size, shift, and grey-level quantization are user determined. See the help file for glcm (included in the package) for details.

Package Installation

To install the latest stable version of glcm from CRAN, fire up R and run:

install.packages('glcm')

Installing glcm Development Version

If you want the very latest version of glcm, you can install the development version. Be aware this version might not install as it is not as well tested as the stable version.

NOTE: If you are installing on Windows, you will need to install the appropriate version of Rtools for your version of R (as glcm contains C++ code) before you follow the below steps.

The easiest way to install the development version of the glcm package is using the devtools package by Hadley Wickham. After installing devtools from CRAN, type:

library(devtools)
install_github('azvoleff/glcm')

Author Contact Information

Alex Zvoleff
Postdoctoral Associate
Tropical Ecology Assessment and Monitoring (TEAM) Network
Conservation International
2011 Crystal Dr. Suite 500
Arlington, VA 22202
USA.

Metadata

Version

1.6.5

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows