MyNixOS website logo
Description

Comprehensive Statistical Analysis of Plant Breeding Experiments.

Performs statistical data analysis of various Plant Breeding experiments. Contains functions for Line by Tester analysis as per Arunachalam, V.(1974) <http://repository.ias.ac.in/89299/> and Diallel analysis as per Griffing, B. (1956) <https://www.publish.csiro.au/bi/pdf/BI9560463>.

gpbStat

CRAN_Status_Badge cranchecks Lifecycle:stable Downloads

The package is used for statistical analysis of Plant Breeding experiments.

Package Website https://nandp1.github.io/gpbStat/

Note: In the latest version 0.3.1 estimation of Kings Variance is not included.

Installation

Install latest package from Github through

install.packages("devtools")
library(devtools)
install_github("nandp1/gpbStat")

Install gpbStat from CRAN with:

install.packages("gpbStat")

Example

Line by Tester analysis (only crosses).


# Loading the gpbStat package
library(gpbStat)

# Loading dataset
data(rcbdltc)


## Now by using function ltc we analyze the data.
## The first parameter of `ltc`  function is "data" followed by replication, line, tester and dependent variable(yield)
results1 = ltc(rcbdltc, replication, line, tester, yield)
#> 
#> Analysis of Line x Tester:  yield

## Viewing the results
results1
#> $Means
#>      Testers
#> Lines       6       7       8
#>     1  68.550 107.640  52.640
#>     2  73.265  97.640  85.650
#>     3 100.885 111.540 117.735
#>     4 105.795  64.450  46.855
#>     5  84.150  81.935  94.820
#> 
#> $`Overall ANOVA`
#>                 Df    Sum Sq    Mean Sq   F value       Pr(>F)
#> Replication      3   148.436   49.47866  0.509612 6.778194e-01
#> Crosses         14 26199.654 1871.40388 19.274772 6.737492e-14
#> Lines            4 10318.361 2579.59035 27.466791 1.421271e-11
#> Testers          2  1718.926  859.46289  9.151332 4.626865e-04
#> Lines X Testers  8 14162.367 1770.29589 18.849639 4.973396e-12
#> Error           42  4077.815   97.09084        NA           NA
#> Total           59 30425.906         NA        NA           NA
#> 
#> $`Coefficient of Variation`
#> [1] 11.42608
#> 
#> $`Genetic Variance`
#>     Genotypic Variance    Phenotypic Variance Environmental Variance 
#>              455.48131              552.57215               97.09084 
#> 
#> $`Genetic Variability `
#>    Phenotypic coefficient of Variation     Genotypic coefficient of Variation 
#>                             27.2585365                             24.7481829 
#> Environmental coefficient of Variation                                   <NA> 
#>                             11.4260778                              0.8242929 
#> 
#> $`Line x Tester ANOVA`
#>                 Df    Sum Sq    Mean Sq   F value       Pr(>F)
#> Lines            4 10318.361 2579.59035 27.466791 1.421271e-11
#> Testers          2  1718.926  859.46289  9.151332 4.626865e-04
#> Lines X Testers  8 14162.367 1770.29589 18.849639 4.973396e-12
#> Error           42  4077.815   97.09084        NA           NA
#> 
#> $`GCA lines`
#>       1       2       3       4       5 
#>  -9.960  -0.718  23.817 -13.870   0.732 
#> 
#> $`GCA testers`
#>      6      7      8 
#>  0.292  6.404 -6.697 
#> 
#> $`SCA crosses`
#>      Testers
#> Lines       6       7       8
#>     1  -8.019  24.959 -16.940
#>     2 -12.546   5.717   6.828
#>     3  -9.461  -4.918  14.378
#>     4  33.136 -14.321 -18.815
#>     5  -3.111 -11.438  14.548
#> 
#> $`Proportional Contribution`
#>          Lines         Tester  Line x Tester 
#>      39.383578       6.560872      54.055550 
#> 
#> $`GV Singh & Chaudhary`
#>                  Cov H.S. (line)                Cov H.S. (tester) 
#>                        67.441205                       -45.541650 
#>               Cov H.S. (average)               Cov F.S. (average) 
#>                         2.680894                       408.052454 
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance 
#>                        10.723574                         5.361787 
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance 
#>                       836.602526                       418.301263 
#> 
#> $`Standard Errors`
#>      S.E. gca for line    S.E. gca for tester        S.E. sca effect 
#>               2.844451               2.203303               4.926734 
#>     S.E. (gi - gj)line   S.E. (gi - gj)tester S.E. (sij - skl)tester 
#>               4.022662               3.115940               6.967454 
#> 
#> $`Critical differance`
#>      C.D. gca for line    C.D. gca for tester        C.D. sca effect 
#>               5.740335               4.446445               9.942552 
#>     C.D. (gi - gj)line   C.D. (gi - gj)tester C.D. (sij - skl)tester 
#>               8.118060               6.288222              14.060892
# Similarly we analyze the line tester data containing only crosses laid out in Alpha lattice design.
# Load the package
library(gpbStat)

# Loading dataset
data("alphaltc")

# Viewing the Structure of dataset
str(alphaltc)
#> 'data.frame':    60 obs. of  5 variables:
#>  $ replication: chr  "r1" "r1" "r1" "r1" ...
#>  $ block      : chr  "b1" "b1" "b1" "b2" ...
#>  $ line       : int  5 1 4 4 1 2 2 5 3 1 ...
#>  $ tester     : int  7 8 8 6 7 7 6 6 8 6 ...
#>  $ yield      : num  47.3 109.4 36.3 36.2 70.7 ...
# There are five columns replication, block, line, tester and yield.


## Now by using function ltc we analyze the data.
## The first parameter of `ltc`  function is "data" followed by replication, line, tester, dependent variable(yield) and block.
## Note: The "block" parameter comes at the end.
results2 = ltc(alphaltc, replication, line, tester, yield, block)
#> 
#> Analysis of Line x Tester: yield

## Viewing the results
results2
#> $Means
#>      Testers
#> Lines        6        7        8
#>     1 86.47500 88.95833 89.55000
#>     2 88.64667 55.48000 50.12667
#>     3 51.19917 53.28417 36.91583
#>     4 33.47500 34.29833 50.78417
#>     5 45.30417 42.14500 49.98000
#> 
#> $`Overall ANOVA`
#>                           Df     Sum Sq   Mean Sq    F value       Pr(>F)
#> Replication                3  1586.4934  528.8311  3.1440495 4.213104e-02
#> Crosses                   14 23862.0199 1704.4300 10.1333150 3.161969e-07
#> Blocks within Replication 16  2555.9198  159.7450  0.9497288 5.307851e-01
#> Lines                      4 18835.3119 4708.8280 24.8833344 6.536498e-11
#> Testers                    2   463.1458  231.5729  1.2237239 3.037332e-01
#> Lines X Testers            8  4563.5622  570.4453  3.0144615 8.508293e-03
#> Error                     26  4373.2165  168.2006         NA           NA
#> Total                     59  2561.2067        NA         NA           NA
#> 
#> $`Coefficient of Variation`
#> [1] 22.70992
#> 
#> $`Genetic Variance`
#>     Genotypic Variance    Phenotypic Variance Environmental Variance 
#>               293.8997               462.1004               168.2006 
#> 
#> $`Genetic Variability `
#>    Phenotypic coefficient of Variation     Genotypic coefficient of Variation 
#>                             37.6417608                             30.0193557 
#> Environmental coefficient of Variation                                   <NA> 
#>                             22.7099195                              0.6360084 
#> 
#> $`Line x Tester ANOVA`
#>                 Df     Sum Sq   Mean Sq   F value       Pr(>F)
#> Lines            4 18835.3119 4708.8280 24.883334 6.536498e-11
#> Testers          2   463.1458  231.5729  1.223724 3.037332e-01
#> Lines X Testers  8  4563.5622  570.4453  3.014461 8.508293e-03
#> Error           26  4373.2165  168.2006        NA           NA
#> 
#> $`GCA lines`
#>       1       2       3       4       5 
#>  31.220   7.643  -9.975 -17.589 -11.298 
#> 
#> $`GCA testers`
#>      6      7      8 
#>  3.912 -2.275 -1.637 
#> 
#> $`SCA crosses`
#>      Testers
#> Lines      6      7       8
#>     1 -5.765  2.906   2.859
#>     2 19.984 -6.996 -12.988
#>     3  0.154  8.426  -8.580
#>     4 -9.956 -2.946  12.902
#>     5 -4.417 -1.390   5.807
#> 
#> $`Proportional Contribution`
#>          Lines         Tester  Line x Tester 
#>      78.934273       1.940933      19.124794 
#> 
#> $`GV Singh & Chaudhary`
#>                  Cov H.S. (line)                Cov H.S. (tester) 
#>                        344.86523                        -16.94362 
#>               Cov H.S. (average)               Cov F.S. (average) 
#>                         30.06778                        262.35565 
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance 
#>                        120.27111                         60.13555 
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance 
#>                        201.12232                         15.84306 
#> 
#> $`Standard Errors`
#>      S.E. gca for line    S.E. gca for tester        S.E. sca effect 
#>               3.743891               2.900005               6.484609 
#>     S.E. (gi - gj)line   S.E. (gi - gj)tester S.E. (sij - skl)tester 
#>               5.294661               4.101227               9.170622 
#> 
#> $`Critical differance`
#>      C.D. gca for line    C.D. gca for tester        C.D. sca effect 
#>               7.695678               5.961047              13.329305 
#>     C.D. (gi - gj)line   C.D. (gi - gj)tester C.D. (sij - skl)tester 
#>              10.883332               8.430193              18.850484
# Line x Tester analysis for multiple traits laid in Alpha lattice design.  
# Load the package
library(gpbStat)

#Load the dataset
data("alphaltcmt")

# View the structure of dataframe. 
str(alphaltcmt)
#> spc_tbl_ [60 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
#>  $ replication: chr [1:60] "r1" "r3" "r2" "r4" ...
#>  $ block      : chr [1:60] "b2" "b2" "b4" "b5" ...
#>  $ line       : chr [1:60] "DIL 2" "DIL 2" "DIL 2" "DIL 2" ...
#>  $ tester     : chr [1:60] "DIL-101" "DIL-101" "DIL-101" "DIL-101" ...
#>  $ hsw        : num [1:60] 25.7 24.5 23.7 25.1 23 ...
#>  $ sh         : num [1:60] 81.7 83.3 86 84.6 85.5 ...
#>  $ gy         : num [1:60] 25.9 41 65.7 47.3 30.8 ...
#>  - attr(*, "spec")=List of 3
#>   ..$ cols   :List of 7
#>   .. ..$ replication: list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#>   .. ..$ block      : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#>   .. ..$ line       : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#>   .. ..$ tester     : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#>   .. ..$ hsw        : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ sh         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   .. ..$ gy         : list()
#>   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#>   ..$ default: list()
#>   .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
#>   ..$ delim  : chr ","
#>   ..- attr(*, "class")= chr "col_spec"
#>  - attr(*, "problems")=<externalptr>

# Conduct Line x Tester analysis
result3 = ltcmt(alphaltcmt, replication, line, tester, alphaltcmt[,5:7], block)
#> 
#> Analysis of Line x Tester for Multiple traits
#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

#> Warning in sqrt(x): NaNs produced

# View the output
result3
#> $Mean
#> $Mean$hsw
#>        Tester
#> Line    DIL-101 DIL-103 DIL 102
#>   DIL-1 24.2800 26.4325 24.3900
#>   DIL-4 25.3625 26.3225 26.5250
#>   DIL 2 24.7525 23.8525 23.1800
#>   DIL 3 22.1300 25.4675 25.0975
#>   DIL 5 24.4075 22.9050 23.8625
#> 
#> $Mean$sh
#>        Tester
#> Line    DIL-101 DIL-103 DIL 102
#>   DIL-1 82.9375 84.2025 83.8700
#>   DIL-4 84.2775 81.8175 84.3250
#>   DIL 2 83.8950 83.7725 84.6225
#>   DIL 3 83.6100 83.0450 84.4600
#>   DIL 5 83.0425 84.8300 82.5875
#> 
#> $Mean$gy
#>        Tester
#> Line    DIL-101 DIL-103 DIL 102
#>   DIL-1 54.2675 44.7525 48.8625
#>   DIL-4 60.5650 53.7975 52.1400
#>   DIL 2 44.9575 47.3975 45.3125
#>   DIL 3 46.0625 55.0550 54.7700
#>   DIL 5 58.2675 53.5525 53.5300
#> 
#> 
#> $ANOVA
#> $ANOVA$hsw
#>                           Df     Sum Sq   Mean Sq   F value      Pr(>F)
#> Replication                3 123.534952 41.178317 5.2008236 0.006007676
#> Blocks within Replication 16 159.578141  9.973634 1.2596705 0.292005429
#> Crosses                   14  95.647543  6.831967 0.8628778 0.602918614
#> Lines                      4  44.421693 11.105423 1.0220298 0.406231362
#> Testers                    2   6.558103  3.279052 0.3017705 0.740992561
#> Lines X Testers            8  44.667747  5.583468 0.5138454 0.839635289
#> Error                     26 205.858982  7.917653        NA          NA
#> Total                     59 584.619618        NA        NA          NA
#> 
#> $ANOVA$sh
#>                           Df     Sum Sq    Mean Sq   F value      Pr(>F)
#> Replication                3  47.847660 15.9492200 5.5792805 0.004311049
#> Blocks within Replication 16  61.895494  3.8684684 1.3532492 0.239549969
#> Crosses                   14  39.935293  2.8525210 0.9978553 0.482967180
#> Lines                      4   3.050693  0.7626733 0.1864544 0.944255260
#> Testers                    2   2.468943  1.2344717 0.3017971 0.740973054
#> Lines X Testers            8  34.415657  4.3019571 1.0517198 0.413116072
#> Error                     26  74.324946  2.8586518        NA          NA
#> Total                     59 224.003393         NA        NA          NA
#> 
#> $ANOVA$gy
#>                           Df      Sum Sq    Mean Sq   F value       Pr(>F)
#> Replication                3  3171.01367 1057.00456 7.6631523 0.0007893935
#> Blocks within Replication 16  2338.12660  146.13291 1.0594455 0.4352040161
#> Crosses                   14  1411.65982  100.83284 0.7310257 0.7261397075
#> Lines                      4   787.60961  196.90240 0.9741847 0.4310920496
#> Testers                    2    48.49009   24.24505 0.1199536 0.8872442280
#> Lines X Testers            8   575.56012   71.94502 0.3559517 0.9380005166
#> Error                     26  3586.26808  137.93339        NA           NA
#> Total                     59 10507.06817         NA        NA           NA
#> 
#> 
#> $GCA.Line
#>              hsw          sh         gy
#> DIL-1  0.4363333 -0.01633333 -2.2585000
#> DIL-4  1.4721667 -0.21300000  3.9481667
#> DIL 2 -0.6695000  0.41033333 -5.6635000
#> DIL 3 -0.3661667  0.01866667  0.4098333
#> DIL 5 -0.8728333 -0.19966667  3.5640000
#> 
#> $GCA.Tester
#>                 hsw         sh         gy
#> DIL-101 -0.41133333 -0.1338333  1.2713333
#> DIL-103  0.39816667 -0.1528333 -0.6416667
#> DIL 102  0.01316667  0.2866667 -0.6296667
#> 
#> $SCA
#> $SCA$hsw
#>        Tester
#> Line       DIL-101    DIL-103    DIL 102
#>   DIL-1 -0.3428333  1.0001667 -0.6573333
#>   DIL-4 -0.2961667 -0.1456667  0.4418333
#>   DIL 2  1.2355000 -0.4740000 -0.7615000
#>   DIL 3 -1.6903333  0.8376667  0.8526667
#>   DIL 5  1.0938333 -1.2181667  0.1243333
#> 
#> $SCA$sh
#>        Tester
#> Line        DIL-101    DIL-103     DIL 102
#>   DIL-1 -0.59866667  0.6853333 -0.08666667
#>   DIL-4  0.93800000 -1.5030000  0.56500000
#>   DIL 2 -0.06783333 -0.1713333  0.23916667
#>   DIL 3  0.03883333 -0.5071667  0.46833333
#>   DIL 5 -0.31033333  1.4961667 -1.18583333
#> 
#> $SCA$gy
#>        Tester
#> Line      DIL-101   DIL-103   DIL 102
#>   DIL-1  3.702000 -3.900000  0.198000
#>   DIL-4  3.792833 -1.061667 -2.731167
#>   DIL 2 -2.203000  2.150000  0.053000
#>   DIL 3 -7.171333  3.734167  3.437167
#>   DIL 5  1.879500 -0.922500 -0.957000
#> 
#> 
#> $CV
#>       hsw        sh        gy 
#> 11.439351  2.020348 22.781566 
#> 
#> $Genetic.Variance.Covariance.
#>     Phenotypic Variance Genotypic Variance Environmental Variance
#> hsw          -0.6689343          -8.586587               7.917653
#> sh           -0.4155230          -3.274175               2.858652
#> gy         -101.1095400        -239.042928             137.933388
#>     Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> hsw                                 NaN                                NaN
#> sh                                  NaN                                NaN
#> gy                                  NaN                                NaN
#>     Environmental coefficient of Variation Broad sense heritability
#> hsw                              11.439351                12.836220
#> sh                                2.020348                 7.879648
#> gy                               22.781566                 2.364198
#> 
#> $Std.Error
#>     S.E. gca for line S.E. gca for tester S.E. sca effect S.E. (gi - gj)line
#> hsw         0.8122835           0.6291921       1.4069162          1.1487423
#> sh          0.4880789           0.3780643       0.8453774          0.6902478
#> gy          3.3903464           2.6261511       5.8722523          4.7946739
#>     S.E. (gi - gj)tester S.E. (sij - skl)tester
#> hsw            0.8898120               1.989680
#> sh             0.5346636               1.195544
#> gy             3.7139384               8.304619
#> 
#> $C.D.
#>     C.D. gca for line C.D. gca for tester C.D. sca effect C.D. (gi - gj)line
#> hsw          1.669673           1.2933228        2.891958           2.361274
#> sh           1.003260           0.7771222        1.737698           1.418825
#> gy           6.968957           5.3981308       12.070587           9.855593
#>     C.D. (gi - gj)tester C.D. (sij - skl)tester
#> hsw             1.829035               4.089846
#> sh              1.099017               2.457476
#> gy              7.634110              17.070388
#> 
#> $Add.Dom.Var
#>     Cov H.S. (line) Cov H.S. (tester) Cov H.S. (average) Cov F.S. (average)
#> hsw       0.4601629        -0.1152208         0.03310414         -0.3374874
#> sh       -0.2949403        -0.1533743        -0.03843202         -0.1641164
#> gy       10.4131155        -2.3849984         0.76596517        -10.5696184
#>     Addittive Variance(F=0) Addittive Variance(F=1) Dominance Variance(F=0)
#> hsw               0.1324166              0.06620828              -1.1670924
#> sh               -0.1537281             -0.07686404               0.7216527
#> gy                3.0638607              1.53193033             -32.9941861
#>     Dominance Variance(F=1)
#> hsw              -0.5835462
#> sh                0.3608263
#> gy              -16.4970931
#> 
#> $Contribution.of.Line.Tester
#>         Lines   Tester  Line x Tester
#> hsw 46.443110 6.856531       46.70036
#> sh   7.639091 6.182359       86.17855
#> gy  55.793159 3.434970       40.77187
Metadata

Version

0.4.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows