MyNixOS website logo
Description

A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies.

Simulation tool to facilitate determination of required sample size to achieve category saturation for studies using multiple repertory grids in conjunction with content analysis.

gridsampler

Build Status

Introduction

A common approach for evaluating multiple repertory grids is to sort the elicited constructs into categories using content analysis (e.g. Green, 2004; Jankowicz, 2004). Sometimes the question arises what sample size would be needed in order to achieve a minimum saturation of a certain number of constructs per category. The gridsampler GUI allows to run simulations in order to answer these type of questions.

An introduction to its usage can be found on GitHub pages. Please report any bugs here.

Installation

You can install the software from CRAN:

install.packages("gridsampler")

or from GitHub:

if (!("devtools" %in% installed.packages())) {
  install.packages("devtools")
} else {
  devtools::install_github("markheckmann/gridsampler")
}

To run it, simply type this:

gridsampler()

# Or run it in a browser window (recommended):
gridsampler(launch.browser = "TRUE")

Citation

If you use gridsampler in your publications, you can cite it as follows.

Heckmann, M . & Burk, L. (2016). gridsampler: A simulation tool to determine the required sample size for repertory grid studies. R package version 0.5. Zenodo. doi:10.5281/zenodo.61067

DOI

References

  • Green, B. (2004). Personal construct psychology and content analysis. Personal Construct Theory & Practice, 1(3), 82–91.
  • Jankowicz, D. (2004). The easy guide to repertory grids. Chichester, England: John Wiley & Sons.
Metadata

Version

0.6

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows