MyNixOS website logo
Description

Machine Learning Model Evaluation for 'h2o' Package.

Enhances the H2O platform by providing tools for detailed evaluation of machine learning models. It includes functions for bootstrapped performance evaluation, extended F-score calculations, and various other metrics, aimed at improving model assessment.

h2otools: Machine Learning Model Evaluation for 'h2o' Package

CRAN version

Model evaluation

There are plenty of procedures for evaluating machine learning models, many of which are not implemented in h2o platform. This repository provides additional functions for model performance evaluation that are not implemented in h2o.

The bootperformance function evaluates the model for n number of bootstrapped samples from the testing dataset, instead of evaluating the model on the testing dataset once. Therefore, evaluating the confidence interval of the model performance.

These functions are briefly described below:

FunctionDescription
automlModelParamfor extracting model parameters from AutoML grid
bootperformanceBootstrap performance evaluation
Fmeasurefor evaluating F3, F4, F5, or any beta value. h2o only provides F0.5, F1, and F2
getPerfMatrixretrieve performance matrix for all thresholds
kappaCalculates kappa for all thresholds
performanceprovides performance measures (AUC, AUCPR, MCC, Kappa, etc.) using objects from h2o package

Additional functions

There are plenty of procedures for evaluating machine learning models, many of which are not implemented in h2o platform. This repository provides additional functions for model performance evaluation that are not implemented in h2o.

The bootperformance function evaluates the model for n number of bootstrapped samples from the testing dataset, instead of evaluating the model on the testing dataset once. Therefore, evaluating the confidence interval of the model performance.

These functions are briefly described below:

FunctionDescription
checkFrameChecks data.frame format, which is useful before uploading it to H2O cloud
h2o.get_idsExtracts model IDs from h2o AutoML and Grids nd returns a vector of model IDs

Installation

You can install the latest stable package from CRAN:

install.packages("h2otools")
Metadata

Version

0.4

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows