MyNixOS website logo
Description

Create HIDECAN Plots for Visualising Genome-Wide Association Studies and Differential Expression R….

Generates HIDECAN plots that summarise and combine the results of genome-wide association studies (GWAS) and transcriptomics differential expression analyses (DE), along with manually curated candidate genes of interest. The HIDECAN plot is presented in Angelin-Bonnet et al. (2023) (currently in review).

hidecan

hidecan is an R package for generating HIDECAN plots, which are visualisations summarising the results of one or more Genome-wide association study (GWAS) and transcriptomics differential expression (DE) analysis, alongside candidate genes of interest.

Installation

You can install the development version of hidecan from GitHub with:

# install.packages("devtools")
devtools::install_github("PlantandFoodResearch/hidecan")

Usage

The hidecan package works as follows:

  • it takes as an input one of more data-frames containing GWAS results, differential expression results and list of candidate genes of interest;

  • it computes the length of each chromosome based on the genomic position of the markers and genes provided in the input data;

  • it filters the datasets to retain significant markers or differentially expressed genes, according to a threshold on their score and/or log2-fold change. The fold-change is set by the user, and can be different for GWAS and differential expression results.

  • it displays the position of the significant markers and genes alongside candidate genes (HIDECAN plot). The plot can be customised by the user via a number of parameters (e.g. legend position or label size).

The wrapper function hidecan_plot() performs all of these steps. Its use is demonstrated below with an example dataset:

library(hidecan)

## Getting an example dataset
x <- get_example_data()

hidecan_plot(
  gwas_list = x[["GWAS"]],          ## data-frame of GWAS results
  de_list = x[["DE"]],              ## data-frame of DE results
  can_list = x[["CAN"]],            ## data-frame of candidate genes
  score_thr_gwas = -log10(0.0001),  ## sign. threshold for GWAS
  score_thr_de = -log10(0.05),      ## sign. threshold for DE
  log2fc_thr = 0,                   ## log2FC threshold for DE
  label_size = 2                    ## label size for candidate genes
)
Metadata

Version

1.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows