MyNixOS website logo
Description

An R Package for the Stochastic Simulation of Disease Spreading in Dynamic Networks.

Simulates stochastic hybrid models for transmission of infectious diseases in dynamic networks. It is a metapopulation model in which each node in the network is a sub-population and disease spreads within nodes and among them, combining two approaches: stochastic simulation algorithm (<doi:10.1146/annurev.physchem.58.032806.104637>) and individual-based approach, respectively. Equations that models spread within nodes are customizable and there are two link types among nodes: migration and influence (commuting). More information in Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. (2020) <doi:10.18637/jss.v094.i06>.

Hybrid Models

Version: 0.3.7


hybridModels is an R package to simulate customizable stochastic hybrid models for transmission of diseases in dynamic networks.

Installation

It is possible to use one of the options below to install the package:

  • Using the function install.packages() for stable versions from CRAN (https://CRAN.R-project.org/package=hybridModels).

From CRAN

install.packages("hybridModels")
  • Making use of the devtools package (Hadley Wickham and Winston Chang (2015). devtools: Tools to Make Developing R Packages Easier. R package version 1.13.5 or higher, http://CRAN.R-project.org/package=devtools).

Through github and devtools

library(devtools)
install_github("fernandosm/hybridModels")

Features

The current version runs:

  • Customizable hybrid model in dynamic networks in which migration is the link type between nodes. Using this link type allows user to create rules that compute the number of individuals that emigrate and the probability weight of a individual of a certain state to emigrate.

  • Customizable hybrid model in dynamic networks in which influence is the link type between nodes.

  • Find nodes of contact chains (outgoing and ingoing).

  • Calculate contact chains' size (outgoing and ingoing).

  • SI hybrid model without explicit demographics (migration link). It is assumed that the total number of individuals is constant and animals migrate between premises.

  • SI hybrid model without explicit demographics (influence link). It is assumed that the total number of individuals is constant and animals do not migrate between premises, they influence other premises.

More Information and Examples

hybridModels: An R Package for the Stochastic Simulation of Disease Spreading in Dynamic Networks

Jason Ardila Galvis (email: [email protected]) studies disease spread among animals and, as an example, he created an animation (click on the image below) based on results generated by hybridModels package. In this example he made use of fictitious data.

Animated visualization for transmission of infectious diseases in dynamic networks

Metadata

Version

0.3.7

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows