MyNixOS website logo
Description

Deep Learning Models for Image Segmentation.

A general-purpose workflow for image segmentation using TensorFlow models based on the U-Net architecture by Ronneberger et al. (2015) <arXiv:1505.04597> and the U-Net++ architecture by Zhou et al. (2018) <arXiv:1807.10165>. We provide pre-trained models for assessing canopy density and understory vegetation density from vegetation photos. In addition, the package provides a workflow for easily creating model input and model architectures for general-purpose image segmentation based on grayscale or color images, both for binary and multi-class image segmentation.

imageseg

R package for deep learning image segmentation using the U-Net model architecture by Ronneberger (2015), implemented in Keras and TensorFlow. It provides pre-trained models for forest structural metrics (canopy density and understory vegetation density) and a workflow to apply these on custom images.

In addition, it provides a workflow for easily creating model input and model architectures for general-purpose image segmentation based on the U-net architecture. Model can be trained on grayscale or color images, and can provide binary or multi-class image segmentation as output.

The package can be found on CRAN:

https://cran.r-project.org/web/packages/imageseg/index.html

The preprint of the paper describing the package is available on bioRxiv:

https://doi.org/10.1101/2021.12.16.469125

Installation

First, install the R package "R.rsp" which enables the static vignettes.

install.packages(R.rsp)

Install the imageseg package from CRAN via:

install.packages(imageseg)

Alternatively you can install from GitHub (requires remotes package and R.rsp):

library(remotes)   
install_github("EcoDynIZW/imageseg", build_vignettes = TRUE)

Using imageseg requires Keras and TensorFlow. See the vignette for information about installation and initial setup:

Tutorial

See the vignette for an introduction and tutorial to imageseg.

browseVignettes("imageseg")

The vignette covers:

  • Installation and setup
  • Sample workflow for canopy density assessments
  • Training new models
  • Continued training of existing models
  • Multi-class image segmentation models
  • Image segmentation based on grayscale images

Forest structure model download

The pre-trained models for forest canopy density and understory vegetation density are available for download:

Canopy model: https://www.dropbox.com/s/rtsly7kfag9fzlh/imageseg_canopy_model.hdf5?dl=1

Understory model: https://www.dropbox.com/s/9qvgcc9j5r36spp/imageseg_understory_model.hdf5?dl=1

Please see the vignette for further information.

Example classifications to give you an impression of model performance:

Canopy model examples https://www.dropbox.com/sh/ypxx5rknpgqolxk/AAATyhQ8-wIi5I9aGlekqn7ia?dl=0

Understory model examples https://www.dropbox.com/sh/4gngdvk7km92clp/AAC2EtoB7lZiQefWVIwFiWZha?dl=0

Training data download

Canopy training data https://www.dropbox.com/s/302yyoi7qil1hn5/canopy_training_data_imageseg.zip?dl=1

Understory training data https://www.dropbox.com/s/s7o7x66l3wiqc6h/understory_training_data_imageseg.zip?dl=1

Metadata

Version

0.5.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows