MyNixOS website logo
Description

Mechanical Loading Prediction Through Accelerometer Data.

Functions to read, process and analyse accelerometer data related to mechanical loading variables. This package is developed and tested for use with raw accelerometer data from triaxial 'ActiGraph' <https://theactigraph.com> accelerometers.

impactr

DOI CRANstatus develVersion R-CMD-check Codecov testcoverage Lifecycle:maturing

impactr is a package with functions to read, process and analyse raw accelerometer data related to mechanical loading variables. You can learn more about this package features and how to use it in vignette("impactr").

Installation

To install the latest stable version of impactr from CRAN, run:

install.packages("impactr")

You can also install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("verasls/impactr")

Usage

library(impactr)

read_acc(impactr_example("hip-raw.csv")) |>
 define_region(
    start_time = "2021-04-06 15:45:00",
    end_time = "2021-04-06 15:45:30"
  ) |>
  specify_parameters(
    acc_placement = "hip",
    subj_body_mass = 78
  ) |>
  filter_acc() |>
  use_resultant() |>
  find_peaks(vector = "resultant") |>
  predict_loading(
    outcome = "grf",
    vector = "resultant",
    model = "walking/running"
  )
#> # Start time:              2021-04-06 15:43:00
#> # Sampling frequency:      100Hz
#> # Accelerometer placement: Hip
#> # Subject body mass:       78kg
#> # Filter:                  Butterworth (4th-ord, low-pass, 20Hz)
#> # Data dimensions:         26 × 3
#>    timestamp           resultant_peak_acc resultant_peak_grf
#>    <dttm>                           <dbl>              <dbl>
#>  1 2021-04-06 15:45:00               1.32              1466.
#>  2 2021-04-06 15:45:01               1.36              1469.
#>  3 2021-04-06 15:45:04               1.30              1464.
#>  4 2021-04-06 15:45:04               2.32              1543.
#>  5 2021-04-06 15:45:05               1.50              1480.
#>  6 2021-04-06 15:45:06               1.68              1494.
#>  7 2021-04-06 15:45:06               1.51              1480.
#>  8 2021-04-06 15:45:07               1.96              1515.
#>  9 2021-04-06 15:45:08               1.37              1470.
#> 10 2021-04-06 15:45:08               1.86              1508.
#> # ℹ 16 more rows
Metadata

Version

0.4.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows