MyNixOS website logo
Description

Identification and Classification of the Most Influential Nodes.

Contains functions for the classification and ranking of top candidate features, reconstruction of networks from adjacency matrices and data frames, analysis of the topology of the network and calculation of centrality measures, and identification of the most influential nodes. Also, a function is provided for running SIRIR model, which is the combination of leave-one-out cross validation technique and the conventional SIR model, on a network to unsupervisedly rank the true influence of vertices. Additionally, some functions have been provided for the assessment of dependence and correlation of two network centrality measures as well as the conditional probability of deviation from their corresponding means in opposite direction. Fred Viole and David Nawrocki (2013, ISBN:1490523995). Csardi G, Nepusz T (2006). "The igraph software package for complex network research." InterJournal, Complex Systems, 1695. Adopted algorithms and sources are referenced in function document.

influential

AppVeyor buildstatus

Overview

The goal of influential is to help identification of the most influential nodes in a network as well as the classification and ranking of top candidate features. This package contains functions for the classification and ranking of features, reconstruction of networks from adjacency matrices and data frames, analysis of the topology of the network and calculation of centrality measures as well as a novel and powerful influential node ranking. The Experimental data-based Integrative Ranking (ExIR) is a sophisticated model for classification and ranking of the top candidate features based on only the experimental data. The first integrative method, namely the Integrated Value of Influence (IVI), that captures all topological dimensions of the network for the identification of network most influential nodes is also provided as a function. Also, neighborhood connectivity, H-index, local H-index, and collective influence (CI), all of which required centrality measures for the calculation of IVI, are for the first time provided in an R package. Additionally, a function is provided for running SIRIR model, which is the combination of leave-one-out cross validation technique and the conventional SIR model, on a network to unsupervisedly rank the true influence of vertices. Furthermore, some functions have been provided for the assessment of dependence and correlation of two network centrality measures as well as the conditional probability of deviation from their corresponding means in opposite directions.

Check out our paper for a more complete description of the IVI formula and all of its underpinning methods and analyses.

Also, read our preprint on the ExIR model and its validations.

Author

The influential package was written by Adrian Salavaty

Advisors

Mirana Ramialison and Peter D. Currie

How to Install

You can install the official CRAN release of the influential with the following code:

install.packages("influential")

Or the development version from GitHub:

## install.packages("remotes")
remotes::install_github("asalavaty/influential", build_vignettes = TRUE)

Vignettes

A comprehensive introduction to influential and all of its functions is available in the vignette.

You may browse Vignettes from within R using the following code.

browseVignettes("influential")

Shiny apps

You can also access the IVI shiny app offline from within R and run it on your local machine using the following command.

influential::runShinyApp("IVI")
  • ExIR Shiny App: A shiny app for running the Experimental-data-based Integrative Ranking (ExIR) model as well as visualization of its results.

You can also access the ExIR shiny app offline from within R and run it on your local machine using the following command.

influential::runShinyApp("ExIR")

How to cite influential

To cite influential, please cite its associated paper:

  • Integrated Value of Influence: An Integrative Method for the Identification of the Most Influential Nodes within Networks. Adrian Salavaty, Mirana Ramialison, Peter D Currie. Patterns. 2020.08.14 (Read online).

You can also refer to the package’s citation information using the citation() function.

citation("influential")

How to contribute

Please don’t hesitate to report any bugs/issues and request for enhancement or any other contributions. To submit a bug report or enhancement request, please use the influential GitHub issues tracker.

Metadata

Version

2.2.9

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows