MyNixOS website logo
Description

Bayesian Latent Gaussian Modelling using INLA and Extensions.

Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (<https://www.r-inla.org>). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) <doi:10.1111/2041-210X.13168>.

inlabru

CRANStatus inlabru statusbadge R buildstatus R code coveragestatus lintrstatus Codecov testcoverage

The goal of inlabru is to facilitate spatial modeling using integrated nested Laplace approximation via the R-INLA package. Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. See Fabian E. Bachl, Finn Lindgren, David L. Borchers, and Janine B. Illian (2019), inlabru: an R package for Bayesian spatial modelling from ecological survey data, Methods in Ecology and Evolution, British Ecological Society, 10, 760–766, doi:10.1111/2041-210X.13168, and citation("inlabru").

The inlabru.org website has links to old tutorials with code examples for versions up to 2.1.13. For later versions, updated versions of these tutorials, as well as new examples, can be found at https://inlabru-org.github.io/inlabru/articles/

Installation

You can install the current CRAN version of inlabru:

install.packages("inlabru")

You can install the latest bugfix release of inlabru from GitHub with:

# install.packages("remotes")
remotes::install_github("inlabru-org/inlabru", ref = "stable")

You can install the development version of inlabru from GitHub with

# install.packages("remotes")
remotes::install_github("inlabru-org/inlabru", ref = "devel")

or track the development version builds via inlabru-org.r-universe.dev:

# Enable universe(s) by inlabru-org
options(repos = c(
  inlabruorg = "https://inlabru-org.r-universe.dev",
  INLA = "https://inla.r-inla-download.org/R/testing",
  CRAN = "https://cloud.r-project.org"
))

# Install some packages
install.packages("inlabru")

Example

This is a basic example which shows how fit a simple spatial Log Gaussian Cox Process (LGCP) and predicts its intensity:

# Load libraries
library(INLA)
#> Loading required package: Matrix
#> Loading required package: sp
#> This is INLA_24.06.27 built 2024-06-27 02:36:04 UTC.
#>  - See www.r-inla.org/contact-us for how to get help.
#>  - List available models/likelihoods/etc with inla.list.models()
#>  - Use inla.doc(<NAME>) to access documentation
library(inlabru)
#> Loading required package: fmesher
library(fmesher)
library(ggplot2)

# Construct latent model components
matern <- inla.spde2.pcmatern(
  gorillas_sf$mesh,
  prior.sigma = c(0.1, 0.01),
  prior.range = c(0.01, 0.01)
)
cmp <- ~ mySmooth(geometry, model = matern) + Intercept(1)
# Fit LGCP model
# This particular bru/like combination has a shortcut function lgcp() as well
fit <- bru(
  cmp,
  like(
    formula = geometry ~ .,
    family = "cp",
    data = gorillas_sf$nests,
    samplers = gorillas_sf$boundary,
    domain = list(geometry = gorillas_sf$mesh)
  ),
  options = list(control.inla = list(int.strategy = "eb"))
)

# Predict Gorilla nest intensity
lambda <- predict(
  fit,
  fm_pixels(gorillas_sf$mesh, mask = gorillas_sf$boundary),
  ~ exp(mySmooth + Intercept)
)

# Plot the result
ggplot() +
  geom_fm(data = gorillas_sf$mesh) +
  gg(lambda, geom = "tile") +
  gg(gorillas$nests, color = "red", size = 0.5, alpha = 0.5) +
  ggtitle("Nest intensity per km squared") +
  xlab("") +
  ylab("")
Metadata

Version

2.11.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows