MyNixOS website logo
Description

Approximate Inclusion Probabilities for Survey Sampling.

Approximate joint-inclusion probabilities in Unequal Probability Sampling, or compute Monte Carlo approximations of the first and second-order inclusion probabilities of a general sampling design as in Fattorini (2006) <doi:10.1093/biomet/93.2.269>.

jipApprox

Build Status CRAN_Status_Badge R badge

Description

This package provides functions to approximate joint-inclusion probabilities in Unequal Probability Sampling, or to find Monte Carlo approximations of first and second-order inclusion probabilities of a general sampling design.

The main functions are:

  • jip_approx(): returns a matrix of approximated joint-inclusion probabilities for unequal probability sampling design with high entropy;
  • jip_MonteCarlo(): produces a matrix of first and second order inclusion probabilities for a given sampling design, approximated through Monte Carlo simulation. This method of approximation is more flexible but also computer-intensive.
  • HTvar(): returns the Horvitz-Thompson or Sen-Yates-Grundy variance or their estimates, computed using true inclusion probabilities or an approximation obtained by jip_approx() or jip_MonteCarlo().

Installation

The development version of the package can be installed from GitHub:

# if not present, install 'devtools' package
install.packages("devtools")
devtools::install_github("rhobis/jipApprox")

Usage

library(jipApprox)

### Generate population data ---
N <- 20; n <- 5

set.seed(0)
x <- rgamma(500, scale=10, shape=5)
y <- abs( 2*x + 3.7*sqrt(x) * rnorm(N) )

pik <- n * x/sum(x)

### Approximate joint-inclusion probabilities for high entropy designs ---
pikl <- jip_approx(pik, method='Hajek')
pikl <- jip_approx(pik, method='HartleyRao')
pikl <- jip_approx(pik, method='Tille')
pikl <- jip_approx(pik, method='Brewer1')
pikl <- jip_approx(pik, method='Brewer2')
pikl <- jip_approx(pik, method='Brewer3')
pikl <- jip_approx(pik, method='Brewer4')

### Approximate inclusion probabilities through Monte Carlo simulation ---
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "brewer")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "tille")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "poisson")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "maxEntropy")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "randomSystematic")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "systematic")
pikl <- jip_MonteCarlo(x=pik, n = n, replications = 100, design = "sampford")

More

  • Please, report any bug or issue here.
  • For more information, please contact the maintainer at [email protected].

Buy Me A Coffee


Metadata

Version

0.1.5

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows