Description
Distance-Based k-Medoids.
Description
Algorithms of distance-based k-medoids clustering: simple and fast k-medoids, ranked k-medoids, and increasing number of clusters in k-medoids. Calculate distances for mixed variable data such as Gower, Podani, Wishart, Huang, Harikumar-PV, and Ahmad-Dey. Cluster validation applies internal and relative criteria. The internal criteria includes silhouette index and shadow values. The relative criterium applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages. The cluster result can be plotted in a marked barplot or pca biplot.