MyNixOS website logo
Description

Forest Analysis with Airborne Laser Scanning (LiDAR) Data.

Provides functions for forest objects detection, structure metrics computation, model calibration and mapping with airborne laser scanning: co-registration of field plots (Monnet and Mermin (2014) <doi:10.3390/f5092307>); tree detection (method 1 in Eysn et al. (2015) <doi:10.3390/f6051721>) and segmentation; forest parameters estimation with the area-based approach: model calibration with ground reference, and maps export (Aussenac et al. (2023) <doi:10.12688/openreseurope.15373.2>); extraction of both physical (gaps, edges, trees) and statistical features useful for e.g. habitat suitability modeling (Glad et al. (2020) <doi:10.1002/rse2.117>) and forest maturity mapping (Fuhr et al. (2022) <doi:10.1002/rse2.274>).

lidaRtRee

R package for forest analysis with airborne laser scanning data

lidaRtRee provides functions for forest objects detection, structure features computation, model calibration and mapping:

  • co-registration of field plots with LiDAR data (Monnet and Mermin (2014));
  • tree detection (method 1 in Eysn et al. (2015)) and segmentation;
  • forest parameters estimation with the area-based approach: model calibration with ground reference, and maps export;
  • extraction of both physical (gaps, edges, trees) and statistical features from LiDAR data useful for e.g. habitat suitability modeling (Glad et al. (2020)) or forest maturity mapping (Fuhr et al. (2022)).

Install

  • R >= 4.2.3 recommended, package lidR >= 4.0.0 required.
  • Install from CRAN, by running in the R console: install.packages("lidaRtRee").
  • Build development version from source with the devtools package: devtools::install_git("https://forgemia.inra.fr/lidar/lidaRtRee").

Tutorials

Tutorials using lidaRtRee functions are available in the vignettes folder as Rmarkdown files, including datasets to run the code. The available tutorials are:

Acknowledgements / funding

lidaRtRee development (2018-2021) was funded by the ADEME (french Agency for Ecological Transition) through the PROTEST project (grant 1703C0069 of the GRAINE program).

logo-ademe-republique-francaise
logo_inrae

Metadata

Version

4.0.8

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows