MyNixOS website logo
Description

Parallel Linear Mixed Model.

Embarrassingly Parallel Linear Mixed Model calculations spread across local cores which repeat until convergence.

lmmpar

Travis-CI Build Status CRAN_Status_Badge

The goal of lmmpar is to ...

Installation

You can install lmmpar from github with:

# install.packages("devtools")
devtools::install_github("fulyagokalp/lmmpar")

Example

This is a basic example which shows you how to solve a common problem:

# Set up fake data
n <- 10000  # number of subjects
m <- 4      # number of repeats
N <- n * m  # true size of data
p <- 50     # number of betas
q <- 2      # width of random effects

# Initial parameters
# beta has a 1 for the first value.  all other values are ~N(10, 1)
beta <- rbind(1, matrix(rnorm(p, 10), p, 1))
R <- diag(m)
D <- matrix(c(16, 0, 0, 0.025), nrow = q)
sigma <- 1

# Set up data
subject <- rep(1:n, each = m)
repeats <- rep(1:m, n)

subj_x <- lapply(1:n, function(i) cbind(1, matrix(rnorm(m * p), nrow = m)))
X <- do.call(rbind, subj_x)
Z <- X[, 1:q]
subj_beta <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, q), D))
subj_err <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, m), sigma * R))

# create a known response
subj_y <- lapply(
   seq_len(n),
   function(i) {
     (subj_x[[i]] %*% beta) +
       (subj_x[[i]][, 1:q] %*% subj_beta[[i]]) +
       subj_err[[i]]
   }
)
Y <- do.call(rbind, subj_y)

# run the algorithm in parallel to recover the known betas
ans <- lmmpar(
   Y,
   X,
   Z,
   subject,
   beta = beta,
   R = R,
   D = D,
   cores = 4,
   sigma = sigma,
   verbose = TRUE
)

Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows