MyNixOS website logo
Description

Plot Map of the Indian Subcontinent.

Get map data frames for the Indian subcontinent with different region levels (e.g., district, state). The package also offers convenience functions for plotting choropleths, visualizing spatial data, and handling state/district codes.

mapindia

R-CMD-check Codecov testcoverage

The goal of mapindia is to simplify mapping of the Indian subcontinent. It has convenient functions for plotting choropleths, visualizing spatial data, and handling state/district codes.

Note: The 3-digit district codes were merged with the 2-digit state codes to create a 5-digit district code.

Installation

To install mapindia from CRAN:

install.packages("mapindia")

You can install the development version of mapindia from GitHub with:

# install.packages("pak")
pak::pak("shubhamdutta26/mapindia")

Usage

library(mapindia)

Example

Plot basic maps of the Indian subcontinent with states and districts:

library(mapindia)
library(ggplot2)
library(cowplot)

states <- plot_india("states") +
  geom_sf(fill= "antiquewhite") +
  theme(panel.grid.major = 
          element_line(color = gray(.5), linetype = "dashed", linewidth = 0.2), 
        panel.background = element_rect(fill = "aliceblue"))

districts <- plot_india("districts") +
  geom_sf(fill= "gray") +
  theme(panel.grid.major = 
          element_line(color = gray(.5), linetype = "dashed", linewidth = 0.2), 
        panel.background = element_rect(fill = "aliceblue"))

cowplot::plot_grid(states, districts, nrow = 1)

Visualize zones such as the Central or Eastern Zonal Councils:

central <- plot_india("states", include = .central, exclude = "UK", labels = TRUE) +
  geom_sf(fill= "antiquewhite")

east <- plot_india("states", include = .east, labels = FALSE)

cowplot::plot_grid(central, east, nrow = 1)

Visualize individual states such as the West Bengal or Tamil Nadu:

mh <- plot_india("districts", include = "MH")

tn <- plot_india("state", include = "Tamil Nadu", labels = FALSE)

cowplot::plot_grid(mh, tn, nrow = 1)

Use your data for visualizations as well:

statepop2011 <- plot_india("states", data = statepop, values = "pop_2011") +
  scale_fill_continuous(low = "blue", high = "yellow", guide = "none")

wbpop2011 <- plot_india("districts", data = wb_2011, values = "pop_2011", include = "WB") +
  scale_fill_continuous(low = "green", high = "red", guide = "none")

cowplot::plot_grid(statepop2011, wbpop2011, nrow = 1)
Metadata

Version

1.0.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows